Modelling the inner debris disc of HR 8799

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.contributorUNSW Australia-
Autor(es): dc.contributorUniversity of Southern Queensland-
Autor(es): dc.contributorKorea Astronomy and Space Science Institute-
Autor(es): dc.contributorArmagh Observatory-
Autor(es): dc.creatorContro, B.-
Autor(es): dc.creatorHorner, J.-
Autor(es): dc.creatorWittenmyer, R. A.-
Autor(es): dc.creatorMarshall, J. P.-
Autor(es): dc.creatorHinse, T. C.-
Data de aceite: dc.date.accessioned2022-08-04T22:06:16Z-
Data de disponibilização: dc.date.available2022-08-04T22:06:16Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2016-11-21-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1093/mnras/stw1935-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/220811-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/220811-
Descrição: dc.descriptionIn many ways, the HR 8799 planetary system strongly resembles our own. It features four giant planets and two debris belts, analogues to the Asteroid and Edgeworth-Kuiper belts. Here, we present the results of dynamical simulations of HR8799's inner debris belt, to study its structure and collisional environment. Our results suggest that HR 8799's inner belt is highly structured, with gaps between regions of dynamical stability. The belt is likely constrained between sharp inner and outer edges, located at ~6 and ~8 au, respectively. Its inner edge coincides with a broad gap cleared by the 4:1 mean-motion resonance with HR 8799e.Within the belt, planetesimals are undergoing a process of collisional attrition like that observed in the Asteroid belt. However, whilst the mean collision velocity in the Asteroid belt exceeds 5 km s-1, the majority of collisions within HR 8799's inner belt occur with velocities of order 1.2 km s-1, or less. Despite this, they remain sufficiently energetic to be destructive - giving a source for the warm dust detected in the system. Interior to the inner belt, test particles remain dynamically unstirred, aside from narrow bands excited by distant high-order resonances with HR 8799e. This lack of stirring is consistent with earlier thermal modelling of HR 8799's infrared excess, which predicted little dust inside 6 au. The inner system is sufficiently stable and unstirred that the formation of telluric planets is feasible, although such planets would doubtless be subject to a punitive impact regime, given the intense collisional grinding required in the inner belt to generate the observed infrared excess.-
Descrição: dc.descriptionKorea Astronomy and Space Science Institute-
Descrição: dc.descriptionUniversity of Sao Paulo State-
Descrição: dc.descriptionSchool of Physics UNSW Australia-
Descrição: dc.descriptionComputational Engineering and Science Research Centre University of Southern Queensland-
Descrição: dc.descriptionAustralian Centre for Astrobiology UNSW Australia-
Descrição: dc.descriptionKorea Astronomy and Space Science Institute, 776 Daedukdae-ro-
Descrição: dc.descriptionArmagh Observatory, College Hill-
Formato: dc.format191-204-
Idioma: dc.languageen-
Relação: dc.relationMonthly Notices of the Royal Astronomical Society-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectCircumstellar matter-
Palavras-chave: dc.subjectMethods: numerical-
Palavras-chave: dc.subjectPlanet-disc interactions-
Palavras-chave: dc.subjectPlanets and satellites: dynamical evolution and stability-
Palavras-chave: dc.subjectStars: individual: HR 8799-
Título: dc.titleModelling the inner debris disc of HR 8799-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.