Do historical metrics and developers communication aid to predict change couplings?

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Tecnológica Federal do Paraná (UTFPR)-
Autor(es): dc.contributorUniversidade Federal da Bahia (UFBA)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorWiese, I. S.-
Autor(es): dc.creatorKuroda, R. T.-
Autor(es): dc.creatorRé, R.-
Autor(es): dc.creatorBulhões, R. S.-
Autor(es): dc.creatorOliva, G. A. [UNESP]-
Autor(es): dc.creatorGerosa, M. A. [UNESP]-
Data de aceite: dc.date.accessioned2022-08-04T22:04:50Z-
Data de disponibilização: dc.date.available2022-08-04T22:04:50Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2015-06-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/TLA.2015.7164225-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/220416-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/220416-
Descrição: dc.descriptionDevelopers have contributed to open-source projects by forking the code and submitting pull requests. Once a pull request is submitted, interested parties can review the set of changes, discuss potential modifications, and even push additional commits if necessary. Mining artifacts that were committed together during history of pull-requests makes it possible to infer change couplings among these artifacts. Supported by the Conway's Law, whom states that organizations which design systems are constrained to produce designs which are copies of the communication structures of these organizations, we hypothesize that social network analysis (SNA) is able to identify strong and weak change dependencies. In this paper, we used statistical models relying on centrality, ego, and structural holes metrics computed from communication networks to predict co-changes among files included in pull requests submitted to the Ruby on Rails project. To the best of our knowledge, this is the first study to employ SNA metrics to predict change dependencies from Github projects-
Descrição: dc.descriptionUniversidade Tecnológica Federal do Paraná (UTFPR)-
Descrição: dc.descriptionUniversidade Federal da Bahia (UFBA)-
Descrição: dc.descriptionUniversidade Estadual de São Paulo (USP), São Paulo-
Descrição: dc.descriptionUniversidade Estadual de São Paulo (USP), São Paulo-
Formato: dc.format1979-1988-
Idioma: dc.languagept_BR-
Relação: dc.relationIEEE Latin America Transactions-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectchange coupling-
Palavras-chave: dc.subjectcommunication network-
Palavras-chave: dc.subjectConways law-
Palavras-chave: dc.subjectsocial network analysis-
Palavras-chave: dc.subjectstructural holes metrics-
Título: dc.titleDo historical metrics and developers communication aid to predict change couplings?-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.