A mathematical model of chemotherapy response to tumour growth

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Federal da Bahia (UFBA)-
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.creatorPinho, S. T.R.-
Autor(es): dc.creatorRodrigues, D. S. [UNESP]-
Autor(es): dc.creatorMancera, P. F.A. [UNESP]-
Data de aceite: dc.date.accessioned2022-08-04T22:03:49Z-
Data de disponibilização: dc.date.available2022-08-04T22:03:49Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2011-12-01-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/220089-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/220089-
Descrição: dc.descriptionA simple mathematical model, developed to simulate the chemotherapy response to tumour growth with stabilized vascularization, is presented as a system of three differential equations associated with the normal cells, cancer cells and chemotherapy agent. Cancer cells and normal cells compete by available resources. The response to chemotherapy killing action on both normal and cancer cells obey Michaelis-Menten saturation function on the chemotherapy agent. Our aim is to investigate the efficiency of the chemotherapy in order to eliminate the cancer cells. For that, we analyse the local stability of the equilibria and the global stability of the cure equilibrium for which there is no cancer cells. We show that there is a region of parameter space that the chemotherapy may eliminate the tumour for any initial conditions. Based on numerical simulations, we present the bifurcation diagram in terms of the infusion rate and the killing action on cancer cells, that exhibit, for which infusion conditions, the system evolves to the cure state. Copyright © Applied Mathematics Institute, University of Alberta.-
Descrição: dc.descriptionInstituto de Física Universidade Federal da Bahia Campus Universitário de Ondina, 40210-340, Salvador-
Descrição: dc.descriptionInstituto de Biociências de Botucatu Universidade Estadual Paulista, CP 510, 18618-970, Botucatu-
Descrição: dc.descriptionInstituto de Ciências Matemáticas e de Computaçã o Universidade de São Paulo, 13566-590, São Carlos-
Descrição: dc.descriptionInstituto de Biociências de Botucatu Universidade Estadual Paulista, CP 510, 18618-970, Botucatu-
Formato: dc.format369-384-
Idioma: dc.languageen-
Relação: dc.relationCanadian Applied Mathematics Quarterly-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectChemotherapy-
Palavras-chave: dc.subjectMathematical model-
Palavras-chave: dc.subjectTumour growth-
Título: dc.titleA mathematical model of chemotherapy response to tumour growth-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.