On harmonic and subharmonic solutions of nonlinear second order equations: Symmetry and bifurcation

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.creatorFörkotter, Monica [UNESP]-
Autor(es): dc.creatorRodrigues, Hildebrando Munhoz-
Data de aceite: dc.date.accessioned2022-08-04T22:01:30Z-
Data de disponibilização: dc.date.available2022-08-04T22:01:30Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued1990-01-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1080/00036819008839942-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/219363-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/219363-
Descrição: dc.descriptionConsider the equation ü + u = g(u,p) + μf(t), where p, μ are small parameters, f is an even continuous п/m-odd-harmonic function (i.e., f(t+п/m) = -f(t), for every t in R), m≥2 and g is an odd function of u. Under certain conditions on f and g it is proved that the small 2п-periodic solutions of the above equation maintain some symmetry properties of the forcing f(t), when μ ≠ 0. Other interesting results describe the changes of the number of such solutions, as p and μ vary in a small neighborhood of the origin. As another contribution of this paper, it was proved that a central assumption which was required in the main results, is generic. The main tool used in this work is the Liapunov-Schmidt Method. © 1990, Taylor & Francis Group, LLC. All rights reserved.-
Descrição: dc.descriptionFaculdade de Ciências e Tecnologia UNESP, Presidente Prudente, SP-
Descrição: dc.descriptionInstituto de Ciências Matemáticas de Sāo Carlos USP, Sāo Carlos, SP-
Descrição: dc.descriptionFaculdade de Ciências e Tecnologia UNESP, Presidente Prudente, SP-
Formato: dc.format63-93-
Idioma: dc.languageen-
Relação: dc.relationApplicable Analysis-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectbifurcation-
Palavras-chave: dc.subjectnonlinear equations-
Palavras-chave: dc.subjectodd-harmonic-
Palavras-chave: dc.subjectPeriodic solutions-
Palavras-chave: dc.subjectsmall solutions-
Palavras-chave: dc.subjectsymmetry-
Título: dc.titleOn harmonic and subharmonic solutions of nonlinear second order equations: Symmetry and bifurcation-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.