Structural integrity identification based on smart materials and neural networks

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorLopes, Vicente [UNESP]-
Autor(es): dc.creatorPark, Gyuhae [UNESP]-
Autor(es): dc.creatorCudney, Harley H. [UNESP]-
Autor(es): dc.creatorInman, Daniel J. [UNESP]-
Data de aceite: dc.date.accessioned2022-08-04T22:01:07Z-
Data de disponibilização: dc.date.available2022-08-04T22:01:07Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2000-01-01-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/219234-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/219234-
Descrição: dc.descriptionThis paper presents a non-model based technique to detect, locate, and characterize structural damage by combining the impedance-based structural health monitoring technique with an artificial neural network. The impedance-based structural health monitoring technique, which utilizes the electromechanical coupling property of piezoelectric materials, has shown engineering feasibility in a variety of practical field applications. Relying on high frequency structural excitations (typically >30 kHz), this technique is very sensitive to minor structural changes in the near field of the piezoelectric sensors. In order to quantitatively assess the state of structures, two sets of artificial neural networks, which utilize measured electrical impedance signals for input patterns, were developed. By employing high frequency ranges and by incorporating neural network features, this technique is able to detect the damage in its early stage and to estimate the nature of damage without prior knowledge of the model of structures. The paper concludes with an experimental example, an investigation on a massive quarter scale model of a steel bridge section, in order to verify the performance of this proposed methodology.-
Descrição: dc.descriptionUNESP, Ilha Solteira-
Descrição: dc.descriptionUNESP, Ilha Solteira-
Formato: dc.format510-515-
Idioma: dc.languageen-
Relação: dc.relationProceedings of the International Modal Analysis Conference - IMAC-
???dc.source???: dc.sourceScopus-
Título: dc.titleStructural integrity identification based on smart materials and neural networks-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.