Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress)

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.contributorBrazilian Network Informat Ctr NICBR-
Autor(es): dc.creatorSilva, Leandro Marcos da [UNESP]-
Autor(es): dc.creatorSilveira, Marcos Rogerio [UNESP]-
Autor(es): dc.creatorCansian, Adriano Mauro [UNESP]-
Autor(es): dc.creatorKobayashi, Hugo Koji-
Autor(es): dc.creatorGkoulalasDivanis, A.-
Autor(es): dc.creatorMarchetti, M.-
Autor(es): dc.creatorAvresky, D. R.-
Data de aceite: dc.date.accessioned2022-08-04T21:59:36Z-
Data de disponibilização: dc.date.available2022-08-04T21:59:36Z-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2022-04-28-
Data de envio: dc.date.issued2019-12-31-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/218875-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/218875-
Descrição: dc.descriptionThe Domain Name System (DNS) protocol provides the mapping between hostnames and Internet Protocol addresses and vice versa. However, attackers use the DNS structure to register malicious domains to engage in malicious activities. One way to mitigate these domains is to use blocklists, but there is considerable time in human detection and insertion into lists. Thus, there are works aimed at detecting domains in an automated way applying machine learning techniques. Given this scenario, the present work presents an analysis of blocklists to identify patterns in malicious domains, where it was concluded that Top Level Domains might be associated with the maliciousness of a domain. After that, a system overview for the multiclass classification of malicious domains using passive DNS is proposed. The system has an exclusive character, because it is the first to use a multiclass approach to indicate the threat present in the malicious domain, and yet, it uses XGBoost and techniques to balance the data.-
Descrição: dc.descriptionFundação para o Desenvolvimento da UNESP (FUNDUNESP)-
Descrição: dc.descriptionSao Paulo State Univ UNESP, Sao Paulo, Brazil-
Descrição: dc.descriptionBrazilian Network Informat Ctr NICBR, Sao Paulo, Brazil-
Descrição: dc.descriptionSao Paulo State Univ UNESP, Sao Paulo, Brazil-
Descrição: dc.descriptionFUNDUNESP: 2764/2018-
Formato: dc.format3-
Idioma: dc.languageen-
Publicador: dc.publisherIeee-
Relação: dc.relation2020 Ieee 19th International Symposium On Network Computing And Applications (nca)-
???dc.source???: dc.sourceWeb of Science-
Palavras-chave: dc.subjectDomain Name System-
Palavras-chave: dc.subjectPassive DNS-
Palavras-chave: dc.subjectMalicious Domain-
Palavras-chave: dc.subjectXGBoost-
Palavras-chave: dc.subjectMulticlass Classification-
Título: dc.titleMulticlass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress)-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.