Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Univ Klinikum Augsburg | - |
Autor(es): dc.contributor | Ostbayer TH Regensburg OTH Regensburg | - |
Autor(es): dc.contributor | OTH Regensburg | - |
Autor(es): dc.contributor | Sana Klinikum Lichtenberg | - |
Autor(es): dc.contributor | Asklepios Klin Barmbek | - |
Autor(es): dc.contributor | Regensburg Univ | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (Unesp) | - |
Autor(es): dc.contributor | Catholic Univ Louvain | - |
Autor(es): dc.contributor | Saku Cent Hosp Adv Care Ctr | - |
Autor(es): dc.contributor | Klin Hirslanden | - |
Autor(es): dc.contributor | Vet Affairs Med Ctr | - |
Autor(es): dc.contributor | Univ Kansas | - |
Autor(es): dc.contributor | Univ British Columbia | - |
Autor(es): dc.creator | Ebigbo, Alanna | - |
Autor(es): dc.creator | Mendel, Robert | - |
Autor(es): dc.creator | Rueckert, Tobias | - |
Autor(es): dc.creator | Schuster, Laurin | - |
Autor(es): dc.creator | Probst, Andreas | - |
Autor(es): dc.creator | Manzeneder, Johannes | - |
Autor(es): dc.creator | Prinz, Friederike | - |
Autor(es): dc.creator | Mende, Matthias | - |
Autor(es): dc.creator | Steinbrueck, Ingo | - |
Autor(es): dc.creator | Faiss, Siegbert | - |
Autor(es): dc.creator | Rauber, David | - |
Autor(es): dc.creator | Souza, Luis A. de [UNESP] | - |
Autor(es): dc.creator | Papa, Joao P. [UNESP] | - |
Autor(es): dc.creator | Deprez, Pierre H. | - |
Autor(es): dc.creator | Oyama, Tsuneo | - |
Autor(es): dc.creator | Takahashi, Akiko | - |
Autor(es): dc.creator | Seewald, Stefan | - |
Autor(es): dc.creator | Sharma, Prateek | - |
Autor(es): dc.creator | Byrne, Michael F. | - |
Autor(es): dc.creator | Palm, Christoph | - |
Autor(es): dc.creator | Messmann, Helmut | - |
Data de aceite: dc.date.accessioned | 2022-02-22T01:05:41Z | - |
Data de disponibilização: dc.date.available | 2022-02-22T01:05:41Z | - |
Data de envio: dc.date.issued | 2021-06-26 | - |
Data de envio: dc.date.issued | 2021-06-26 | - |
Data de envio: dc.date.issued | 2020-11-15 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1055/a-1311-8570 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/210686 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/210686 | - |
Descrição: dc.description | Background The accurate differentiation between T1a and T1b Barrett's-related cancer has both therapeutic and prognostic implications but is challenging even for experienced physicians. We trained an artificial intelligence (AI) system on the basis of deep artificial neural networks (deep learning) to differentiate between T1a and T1b Barrett's cancer on white-light images. Methods Endoscopic images from three tertiary care centers in Germany were collected retrospectively. A deep learning system was trained and tested using the principles of cross validation. A total of 230 white-light endoscopic images (108 T1a and 122 T1b) were evaluated using the AI system. For comparison, the images were also classified by experts specialized in endoscopic diagnosis and treatment of Barrett's cancer. Results The sensitivity, specificity, F1 score, and accuracy of the AI system in the differentiation between T1a and T1b cancer lesions was 0.77, 0.64, 0.74, and 0.71, respectively. There was no statistically significant difference between the performance of the AI system and that of experts, who showed sensitivity, specificity, F1, and accuracy of 0.63, 0.78, 0.67, and 0.70, respectively. Conclusion This pilot study demonstrates the first multicenter application of an AI-based system in the prediction of submucosal invasion in endoscopic images of Barrett's cancer. AI scored equally to international experts in the field, but more work is necessary to improve the system and apply it to video sequences and real-life settings. Nevertheless, the correct prediction of submucosal invasion in Barrett's cancer remains challenging for both experts and AI. | - |
Descrição: dc.description | Bavarian Academic Forum (BayWISS) | - |
Descrição: dc.description | Univ Klinikum Augsburg, Med Klin 3, Stenglinstr 2, D-86156 Augsburg, Germany | - |
Descrição: dc.description | Ostbayer TH Regensburg OTH Regensburg, Regensburg Med Image Comp ReMIC, Regensburg, Germany | - |
Descrição: dc.description | OTH Regensburg, Regensburg Ctr Hlth Sci & Technol RCHST, Regensburg, Germany | - |
Descrição: dc.description | Sana Klinikum Lichtenberg, Gastroenterol, Berlin, Germany | - |
Descrição: dc.description | Asklepios Klin Barmbek, Dept Gastroenterol Hepatol & Intervent Endoscopy, Hamburg, Germany | - |
Descrição: dc.description | OTH Regensburg, Regensburg Ctr Biomed Engn RCBE, Regensburg, Germany | - |
Descrição: dc.description | Regensburg Univ, Regensburg, Germany | - |
Descrição: dc.description | Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil | - |
Descrição: dc.description | Catholic Univ Louvain, Clin Univ St Luc, Brussels, Belgium | - |
Descrição: dc.description | Saku Cent Hosp Adv Care Ctr, Nagano, Japan | - |
Descrição: dc.description | Klin Hirslanden, GastroZentrum, Zurich, Switzerland | - |
Descrição: dc.description | Vet Affairs Med Ctr, Dept Gastroenterol & Hepatol, Kansas City, MO USA | - |
Descrição: dc.description | Univ Kansas, Sch Med, Kansas City, MO USA | - |
Descrição: dc.description | Univ British Columbia, Vancouver Gen Hosp, Div Gastroenterol, Vancouver, BC, Canada | - |
Descrição: dc.description | Sao Paulo State Univ, Dept Comp, Sao Paulo, Brazil | - |
Formato: dc.format | 6 | - |
Idioma: dc.language | en | - |
Publicador: dc.publisher | Georg Thieme Verlag Kg | - |
Relação: dc.relation | Endoscopy | - |
???dc.source???: dc.source | Web of Science | - |
Título: dc.title | Endoscopic prediction of submucosal invasion in Barrett's cancer with the use of artificial intelligence: a pilot study | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: