Scene Change Detection Using Multiscale Cascade Residual Convolutional Neural Networks

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorPetr Brasileiro SA Petrobras-
Autor(es): dc.creatorSantos, Daniel F. S. [UNESP]-
Autor(es): dc.creatorPires, Rafael G. [UNESP]-
Autor(es): dc.creatorColombo, Danilo-
Autor(es): dc.creatorPap, Joao P. [UNESP]-
Autor(es): dc.creatorIEEE-
Data de aceite: dc.date.accessioned2022-02-22T00:59:32Z-
Data de disponibilização: dc.date.available2022-02-22T00:59:32Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2019-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI51738.2020.00023-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/210334-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/210334-
Descrição: dc.descriptionScene change detection is an image processing problem related to partitioning pixels of a digital image into foreground and background regions. Mostly, visual knowledge-based computer intelligent systems, like traffic monitoring, video surveillance, and anomaly detection, need to use change detection techniques. Amongst the most prominent detection methods, there are the learning-based ones, which besides sharing similar training and testing protocols, differ from each other in terms of their architecture design strategies. Such architecture design directly impacts on the quality of the detection results, and also in the device resources capacity, like memory. In this work, we propose a novel Multiscale Cascade Residual Convolutional Neural Network that integrates multiscale processing strategy through a Residual Processing Module, with a Segmentation Convolutional Neural Network. Experiments conducted on two different datasets support the effectiveness of the proposed approach, achieving average overall F-measure results of 0.9622 and 0.9664 over Change Detection 2014 and PetrobrasROUTES datasets respectively, besides comprising approximately eight times fewer parameters. Such obtained results place the proposed technique amongst the top four state-of-the-art scene change detection methods.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionPetrobras-
Descrição: dc.descriptionSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil-
Descrição: dc.descriptionPetr Brasileiro SA Petrobras, Cenpes, Rio De Janeiro, RJ, Brazil-
Descrição: dc.descriptionSao Paulo State Univ, Dept Comp, Bauru, SP, Brazil-
Descrição: dc.descriptionCNPq: 307066/20177-
Descrição: dc.descriptionCNPq: 427968/2018-6-
Descrição: dc.descriptionFAPESP: 2013/07375-0-
Descrição: dc.descriptionFAPESP: 2014/12236-1-
Descrição: dc.descriptionPetrobras: 2017/00285-6-
Formato: dc.format108-115-
Idioma: dc.languageen-
Publicador: dc.publisherIeee-
Relação: dc.relation2020 33rd Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi 2020)-
???dc.source???: dc.sourceWeb of Science-
Título: dc.titleScene Change Detection Using Multiscale Cascade Residual Convolutional Neural Networks-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.