Nonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorKrein, Gastao [UNESP]-
Autor(es): dc.creatorMiller, Carlisson [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:59:20Z-
Data de disponibilização: dc.date.available2022-02-22T00:59:20Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-04-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.3390/sym13040551-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/210268-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/210268-
Descrição: dc.descriptionStrong magnetic fields impact quantum-chromodynamics (QCD) properties in several situations; examples include the early universe, magnetars, and heavy-ion collisions. These examples share a common trait-time evolution. A prominent QCD property impacted by a strong magnetic field is the quark condensate, an approximate order parameter of the QCD transition between a high-temperature quark-gluon phase and a low-temperature hadronic phase. We use the linear sigma model with quarks to address the quark condensate time evolution under a strong magnetic field. We use the closed time path formalism of nonequilibrium quantum field theory to integrate out the quarks and obtain a mean-field Langevin equation for the condensate. The Langevin equation features dissipation and noise kernels controlled by a damping coefficient. We compute the damping coefficient for magnetic field and temperature values achieved in peripheral relativistic heavy-ion collisions and solve the Langevin equation for a temperature quench scenario. The magnetic field changes the dissipation and noise pattern by increasing the damping coefficient compared to the zero-field case. An increased damping coefficient increases fluctuations and time scales controlling condensate's short-time evolution, a feature that can impact hadron formation at the QCD transition. The formalism developed here can be extended to include other order parameters, hydrodynamic modes, and system's expansion to address magnetic field effects in complex settings as heavy-ion collisions, the early universe, and magnetars.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionUniv Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271 Bloco 2, BR-01140070 Sao Paulo, SP, Brazil-
Descrição: dc.descriptionUniv Estadual Paulista, Inst Fis Teor, Rua Dr Bento Teobaldo Ferraz 271 Bloco 2, BR-01140070 Sao Paulo, SP, Brazil-
Descrição: dc.descriptionCNPq: 309262/2019-4-
Descrição: dc.descriptionCNPq: 464898/2014-5-
Descrição: dc.descriptionFAPESP: 2018/252259-
Formato: dc.format21-
Idioma: dc.languageen-
Publicador: dc.publisherMdpi-
Relação: dc.relationSymmetry-basel-
???dc.source???: dc.sourceWeb of Science-
Palavras-chave: dc.subjectquantum chromodynamics-
Palavras-chave: dc.subjectchiral symmetry-
Palavras-chave: dc.subjectquark condensate-
Palavras-chave: dc.subjectquark-gluon plasma-
Palavras-chave: dc.subjectnonequilibrium dynamics-
Título: dc.titleNonequilibrium Dynamics of the Chiral Quark Condensate under a Strong Magnetic Field-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.