Thermodynamic and structural aspects of molecular recognition in mannose-binding protein complexes: a theoretical study over HRP-ArtinM association

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorSanto, Anderson Aparecido do Espirito [UNESP]-
Autor(es): dc.creatorFeliciano, Gustavo Troiano [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:55:51Z-
Data de disponibilização: dc.date.available2022-02-22T00:55:51Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-03-15-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/s00894-021-04694-4-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/209267-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/209267-
Descrição: dc.descriptionThe biomolecular recognition of D-mannose-binding lectin from Artocarpus heterophyllus (ArtinM) by Horseradish Peroxidase (HRP) mediated by glycosylation allows their application in a multitude of biological systems. The present work describes the use of molecular dynamics (MD) to assess the Gibbs free energy associated with the formation of a ArtinM-HRP conjugate mediated by a glycosylation molecule. For the enthalpy term, we applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method and for the vibrational entropy term, we use the quasi-harmonic approximation. Our results show that, even without glycosylation, the binding free energy between ArtinM and HRP is - 196.154 kJmol(- 1), an extremely high affinity with low selectivity, originated mainly through the van der Waals energy terms. The binding free energy between ArtinM and the glycosylated HRP (gHRP) was calculated at - 66.156 kJmol(- 1), an absolute and considerably lower value, however, originated from electrostatic energy terms, which increases the selectivity of molecular recognition. Our work has shown that the HRP active site region has a high affinity and low selectivity for other biomolecules. The presence of glycosylation plays a role in increasing this selectivity for this region. Thus, we conclude that performing mutagenesis of amino acid residues near the entrance of the catalytic site, can improve the activity of non-glycosylated HRPs. This illustrates new insights that can be applied to carbohydrate-based immunochemistry.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionSao Paulo State Univ, Inst Chem, Araraquara, SP, Brazil-
Descrição: dc.descriptionSao Paulo State Univ, Inst Chem, Araraquara, SP, Brazil-
Descrição: dc.descriptionFAPESP: 2017/24839-0-
Formato: dc.format9-
Idioma: dc.languageen-
Publicador: dc.publisherSpringer-
Relação: dc.relationJournal Of Molecular Modeling-
???dc.source???: dc.sourceWeb of Science-
Palavras-chave: dc.subjectGlycoprotein-
Palavras-chave: dc.subjectLectin-
Palavras-chave: dc.subjectImmunoglycochemistry-
Palavras-chave: dc.subjectMolecular dynamics-
Palavras-chave: dc.subjectBinding free energy-
Título: dc.titleThermodynamic and structural aspects of molecular recognition in mannose-binding protein complexes: a theoretical study over HRP-ArtinM association-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.