Piezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversity of Limerick-
Autor(es): dc.contributorFederal Institute of Mato Grosso do Sul-
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorConnelly, Michael J.-
Autor(es): dc.creatorGaleti, José Henrique-
Autor(es): dc.creatorKitano, Cláudio [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:54:03Z-
Data de disponibilização: dc.date.available2022-02-22T00:54:03Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2020-12-14-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1364/OSAC.402485-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/208668-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/208668-
Descrição: dc.descriptionLaser vibrometry has many applications in non-contact dynamic displacement and vibration measurement. A test beam reflected from a target and a reference beam are combined and detected by a photodiode; the photodetected signal is then processed to determine the target displacement and vibration. This paper describes the use of a 9 kHz measurement bandwidth system, consisting of a Michelson interferometer and self-correcting feedback synthetic-heterodyne signal processing technique, to measure the displacement impulse response of a commercial piezoelectric mirror shifter (PMS), consisting of a mirror mounted on a Piezoelectric transducer and a connecting 50 Ω electrical coaxial cable. The actual non-ideal applied impulse and measured impulse response data were used in conjunction with the instrument variable method to determine a Laplace domain linear transfer function approximation to the actual PMS transfer function. The best transfer function fitting, having a 84% normalized root mean square goodness of fit, was obtained using a 5-th order transfer function having two complex conjugate pole pairs, with associated natural frequencies of 6.29 and 6.79 kHz, and a single real pole. The transfer function zeros consisted of a single complex conjugate zero pair, having an antiresonance frequency of 6.38 kHz and a single real zero. Knowing the analytic transfer function of PMS based nanopositioners is useful for example in the design of closed-loop phase-locked interferometers for wideband sensing.-
Descrição: dc.descriptionEnterprise Ireland-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionOptical Communications Research Group Department of Electronic and Computer Engineering University of Limerick-
Descrição: dc.descriptionFederal Institute of Mato Grosso do Sul-
Descrição: dc.descriptionDepartment of Electrical Engineering São Paulo State University (UNESP)-
Descrição: dc.descriptionDepartment of Electrical Engineering São Paulo State University (UNESP)-
Descrição: dc.descriptionEnterprise Ireland: CFTD/07/IT/312b-
Descrição: dc.descriptionCNPq: CNPq 420673/2016-4-
Formato: dc.format3424-3432-
Idioma: dc.languageen-
Relação: dc.relationOSA Continuum-
???dc.source???: dc.sourceScopus-
Título: dc.titlePiezoelectric mirror shifter transfer function measurement, modelling, and analysis using feedback based synthetic-heterodyne Michelson interferometry-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.