FEA simulation and experimental validation of mode I and II delamination at the carbon/glass/epoxy hybrid interface: Physical-based interpretation

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorFaculty of Mechanical Engineering-
Autor(es): dc.creatorMonticeli, Francisco Maciel [UNESP]-
Autor(es): dc.creatorDaou, David-
Autor(es): dc.creatorPeković, Ognjen-
Autor(es): dc.creatorSimonović, Aleksandar-
Autor(es): dc.creatorVoorwald, Herman Jacobus Cornelis [UNESP]-
Autor(es): dc.creatorCioffi, Maria Odila Hilário [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:52:20Z-
Data de disponibilização: dc.date.available2022-02-22T00:52:20Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2020-11-30-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.coco.2020.100532-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/208074-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/208074-
Descrição: dc.descriptionThe aim of this study was to carry out simulations and perform experimental quasi-static delamination tests in modes I and II to characterize the mechanical behavior at a hybrid interface. For that purpose, contact angle, infrared spectroscopy, and energy balance model results were obtained to characterize the physical interfacial energy behavior. The simulations and experimental tests presented similar values and trends, indicating that this is a viable method for predicting the critical fracture toughness of hybrid laminated composites. The low interfacial energy of the stitching (PS) and the epoxy matrix showed a decrease in the experimental strain energy release. The hybrid interface (carbon/glass/epoxy) showed an improvement in fracture toughness, which was physically elucidated through the synergy of high CF/epoxy interfacial energy strain combined with the toughness interaction via organosilane in GF/epoxy interface. In addition, the directional change in the micro-cracks generated between the two interfaces (rough fracture) requires an increase in energy to propagate the delamination as a result of the synergy between the CF and GF stiffness, also confirmed by the physical-based model.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionDepartment of Materials and Technology São Paulo State University (Unesp) School of Engineering-
Descrição: dc.descriptionUniversity of Belgrade Faculty of Mechanical Engineering Department of Aerospace Engineering, Kraljice Marije 16-
Descrição: dc.descriptionDepartment of Materials and Technology São Paulo State University (Unesp) School of Engineering-
Idioma: dc.languageen-
Relação: dc.relationComposites Communications-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectDelamination test-
Palavras-chave: dc.subjectFEA simulation-
Palavras-chave: dc.subjectFracture toughness-
Palavras-chave: dc.subjectHybrid composite-
Título: dc.titleFEA simulation and experimental validation of mode I and II delamination at the carbon/glass/epoxy hybrid interface: Physical-based interpretation-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.