The potential of cfd simulators for jet fire analysis: The usp-unesp experimental campaign

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.creatorSchleder, Adriana Miralles [UNESP]-
Autor(es): dc.creatorda Silva, Mariana Alves [UNESP]-
Autor(es): dc.creatorMartins, Marcelo Ramos-
Data de aceite: dc.date.accessioned2022-02-22T00:51:32Z-
Data de disponibilização: dc.date.available2022-02-22T00:51:32Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2019-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.3850/978-981-14-8593-0_4513-cd-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/207833-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/207833-
Descrição: dc.descriptionThe effects of hazardous materials releases represent a major threat to health and the environment; consequently, the proper forecast of such effects is essential to achieve the desired safety levels in operations around the world. One of the undesired scenarios that an accidental release of such materials may entail is the development of a jet fire. It is essential to properly model the jets fires to predict their consequences. In recent years, the interest in Computational Fluid Dynamics (CFD) tools to perform consequences analysis has increased. Thus, it is imperative to amplify the availability of experimental data in order to allow validation studies. In this paper, it is described the first stage of an experimental campaign undertaken by a joint venture between University of Sao Paulo (USP) and Sao Paulo State University (UNESP) to investigate the performance of CFD tools when analysing jet fires. This ongoing project intends to undertake a deep comparison between experimental data and simulations results in terms of radiation and temperature; here are presented the preliminary results regarding to radiation. The CFD tool used to analyse those scenarios showed potential to provide good adherence between predicted and measured values; however, it was possible to highlight some potential points of improvements in modelling.-
Descrição: dc.descriptionDepartment of Industrial Engineering Sao Paulo State University – UNESP – Itapeva / Analysis Evaluation and Risk Management Laboratory– LabRisco University of Sao Paulo-
Descrição: dc.descriptionDepartment of Industrial Engineering Sao Paulo State University – UNESP-Itapeva-
Descrição: dc.descriptionAnalysis Evaluation and Risk Management Laboratory – LabRisco Naval Architecture and Ocean Engineering Department University of Sao Paulo-
Descrição: dc.descriptionDepartment of Industrial Engineering Sao Paulo State University – UNESP – Itapeva / Analysis Evaluation and Risk Management Laboratory– LabRisco University of Sao Paulo-
Descrição: dc.descriptionDepartment of Industrial Engineering Sao Paulo State University – UNESP-Itapeva-
Formato: dc.format1891-1898-
Idioma: dc.languageen-
Relação: dc.relationProceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety Assessment and Management Conference-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectCFD simulations-
Palavras-chave: dc.subjectConsequence analysis-
Palavras-chave: dc.subjectField test-
Palavras-chave: dc.subjectField tests-
Palavras-chave: dc.subjectJet fires-
Palavras-chave: dc.subjectRisk analysis-
Título: dc.titleThe potential of cfd simulators for jet fire analysis: The usp-unesp experimental campaign-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.