Estimating the degree of non-Markovianity using machine learning

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorİzmir University of Economics-
Autor(es): dc.contributorUniversidad Mayor-
Autor(es): dc.creatorFanchini, Felipe F. [UNESP]-
Autor(es): dc.creatorKarpat, Göktuǧ-
Autor(es): dc.creatorRossatto, Daniel Z. [UNESP]-
Autor(es): dc.creatorNorambuena, Ariel-
Autor(es): dc.creatorCoto, Raúl-
Data de aceite: dc.date.accessioned2022-02-22T00:50:01Z-
Data de disponibilização: dc.date.available2022-02-22T00:50:01Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-01-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1103/PhysRevA.103.022425-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/207370-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/207370-
Descrição: dc.descriptionIn the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography.-
Descrição: dc.descriptionFaculdade de Ciências Universidade Estadual Paulista (UNESP)-
Descrição: dc.descriptionFaculty of Arts and Sciences Department of Physics İzmir University of Economics-
Descrição: dc.descriptionUniversidade Estadual Paulista (UNESP) Campus Experimental de Itapeva-
Descrição: dc.descriptionCentro de Investigación DAiTA Lab Facultad de Estudios Interdisciplinarios Universidad Mayor-
Descrição: dc.descriptionFaculdade de Ciências Universidade Estadual Paulista (UNESP)-
Descrição: dc.descriptionUniversidade Estadual Paulista (UNESP) Campus Experimental de Itapeva-
Idioma: dc.languageen-
Relação: dc.relationPhysical Review A-
???dc.source???: dc.sourceScopus-
Título: dc.titleEstimating the degree of non-Markovianity using machine learning-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.