OsteoBLAST: Computational Routine of Global Molecular Analysis Applied to Biomaterials Development

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorUniversidade Estadual de Campinas (UNICAMP)-
Autor(es): dc.contributorUniversity Medical Center Rotterdam-
Autor(es): dc.creatorFerreira, Marcel Rodrigues [UNESP]-
Autor(es): dc.creatorMilani, Renato-
Autor(es): dc.creatorRangel, Elidiane C. [UNESP]-
Autor(es): dc.creatorPeppelenbosch, Maikel-
Autor(es): dc.creatorZambuzzi, Willian [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:47:58Z-
Data de disponibilização: dc.date.available2022-02-22T00:47:58Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2020-10-08-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.3389/fbioe.2020.565901-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/206730-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/206730-
Descrição: dc.descriptionFor bone purposes, surface modifications are a common trend in biomaterials research aiming to reduce the time necessary for osteointegration, culminating in faster recovery of patients. In this scenario, analysis of intracellular signaling pathways have emerged as an important and reliable strategy to predict biological responses from in vitro approaches. We have combined global analysis of intracellular protein phosphorylation, systems biology and bioinformatics into an early biomaterial analysis routine called OsteoBLAST. We employed the routine as follows: the PamChip tyrosine kinase assay was applied to mesenchymal stem cells grown on three distinct titanium surfaces: machined, dual acid-etched and nanoHA. Then, OsteoBLAST was able to identify the most reliable spots to further obtain the differential kinome profile and finally to allow a comparison among the different surfaces. Thereafter, NetworKIN, STRING, and Cytoscape were used to build and analyze a supramolecular protein-protein interaction network, and DAVID tools identified biological signatures in the differential kinome for each surface.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionDepartment of Chemistry and Biochemistry Institute of Biosciences São Paulo State University (UNESP)-
Descrição: dc.descriptionBioquímica e Biologia Tecidual Biology Institute Universidade de Campinas (UNICAMP)-
Descrição: dc.descriptionInstitute of Science and Technology São Paulo State University (UNESP)-
Descrição: dc.descriptionDepartment of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam-
Descrição: dc.descriptionDepartment of Chemistry and Biochemistry Institute of Biosciences São Paulo State University (UNESP)-
Descrição: dc.descriptionInstitute of Science and Technology São Paulo State University (UNESP)-
Descrição: dc.descriptionFAPESP: 2014/22689-3-
Descrição: dc.descriptionFAPESP: 2015/03639-8-
Descrição: dc.descriptionFAPESP: 2018/05731-7-
Idioma: dc.languageen-
Relação: dc.relationFrontiers in Bioengineering and Biotechnology-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectalternative methods-
Palavras-chave: dc.subjectanalysis-
Palavras-chave: dc.subjectbioinformatics-
Palavras-chave: dc.subjectbiomaterials-
Palavras-chave: dc.subjectbone healing-
Título: dc.titleOsteoBLAST: Computational Routine of Global Molecular Analysis Applied to Biomaterials Development-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.