Ultrahigh-Gain Organic Electrochemical Transistor Chemosensors Based on Self-Curled Nanomembranes

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorBrazilian Center for Research in Energy and Materials (CNPEM)-
Autor(es): dc.contributorUniversidade Estadual de Campinas (UNICAMP)-
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorFerro, Letícia M. M.-
Autor(es): dc.creatorMerces, Leandro-
Autor(es): dc.creatorde Camargo, Davi H. S.-
Autor(es): dc.creatorBufon, Carlos C. B. [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:47:05Z-
Data de disponibilização: dc.date.available2022-02-22T00:47:05Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2020-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1002/adma.202101518-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/206438-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/206438-
Descrição: dc.descriptionOrganic electrochemical transistors (OECTs) are technologically relevant devices presenting high susceptibility to physical stimulus, chemical functionalization, and shape changes—jointly to versatility and low production costs. The OECT capability of liquid-gating addresses both electrochemical sensing and signal amplification within a single integrated device unit. However, given the organic semiconductor time-consuming doping process and their usual low field-effect mobility, OECTs are frequently considered low-end category devices. Toward high-performance OECTs, microtubular electrochemical devices based on strain-engineering are presented here by taking advantage of the exclusive shape features of self-curled nanomembranes. Such novel OECTs outperform the state-of-the-art organic liquid-gated transistors, reaching lower operating voltage, improved ion doping, and a signal amplification with a >104 intrinsic gain. The multipurpose OECT concept is validated with different electrolytes and distinct nanometer-thick molecular films, namely, phthalocyanine and thiophene derivatives. The OECTs are also applied as transducers to detect a biomarker related to neurological diseases, the neurotransmitter dopamine. The self-curled OECTs update the premises of electrochemical energy conversion in liquid-gated transistors, yielding a substantial performance improvement and new chemical sensing capabilities within picoliter sampling volumes.-
Descrição: dc.descriptionBrazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Máximo Scolfaro 10000, Polo II de Alta Tecnologia-
Descrição: dc.descriptionInstitute of Chemistry (IQ) University of Campinas (UNICAMP) Cidade Universitária “Zeferino Vaz”-
Descrição: dc.descriptionPostgraduate Program in Materials Science and Technology (POSMAT) São Paulo State University (UNESP)-
Descrição: dc.descriptionPostgraduate Program in Materials Science and Technology (POSMAT) São Paulo State University (UNESP)-
Idioma: dc.languageen-
Relação: dc.relationAdvanced Materials-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectdopamine-
Palavras-chave: dc.subjectdoping-
Palavras-chave: dc.subjectnanomembrane origami-
Palavras-chave: dc.subjectorganic electrochemical transistor-
Palavras-chave: dc.subjectsensor-
Título: dc.titleUltrahigh-Gain Organic Electrochemical Transistor Chemosensors Based on Self-Curled Nanomembranes-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.