Explaining dimensionality reduction results using Shapley values

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorMarcílio-Jr, Wilson E. [UNESP]-
Autor(es): dc.creatorEler, Danilo M. [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:46:37Z-
Data de disponibilização: dc.date.available2022-02-22T00:46:37Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-09-15-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2021.115020-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/206269-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/206269-
Descrição: dc.descriptionDimensionality reduction (DR) techniques have been consistently supporting high-dimensional data analysis in various applications. Besides the patterns uncovered by these techniques, the interpretation of DR results based on each feature's contribution to the low-dimensional representation supports new finds through exploratory analysis. Current literature approaches designed to interpret DR techniques do not explain the features’ contributions well since they focus only on the low-dimensional representation or do not consider the relationship among features. This paper presents ClusterShapley to address these problems, using Shapley values to generate explanations of dimensionality reduction techniques and interpret these algorithms using a cluster-oriented analysis. ClusterShapley explains the formation of clusters and the meaning of their relationship, which is useful for exploratory data analysis in various domains. We propose novel visualization techniques to guide the interpretation of features’ contributions on clustering formation and validate our methodology through case studies of publicly available datasets. The results demonstrate our approach's interpretability and analysis power to generate insights about pathologies and patients in different conditions using DR results.-
Descrição: dc.descriptionFaculty of Sciences and Technology São Paulo State University (UNESP)-
Descrição: dc.descriptionFaculty of Sciences and Technology São Paulo State University (UNESP)-
Idioma: dc.languageen-
Relação: dc.relationExpert Systems with Applications-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectDimensionality reduction-
Palavras-chave: dc.subjectExplainability-
Palavras-chave: dc.subjectShapley values-
Palavras-chave: dc.subjectVisualization-
Título: dc.titleExplaining dimensionality reduction results using Shapley values-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.