EEG-FES-Force-MMG closed-loop control systems of a volunteer with paraplegia considering motor imagery with fatigue recognition and automatic shut-off

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorUniversidade Tecnológica Federal do Paraná (UTFPR)-
Autor(es): dc.contributorUniversidade Estadual de Londrina (UEL)-
Autor(es): dc.contributorIoT e Manufatura 4.0-
Autor(es): dc.creatorBroniera Junior, Paulo [UNESP]-
Autor(es): dc.creatorCampos, Daniel Prado-
Autor(es): dc.creatorLazzaretti, André Eugenio-
Autor(es): dc.creatorNohama, Percy-
Autor(es): dc.creatorCarvalho, Aparecido Augusto [UNESP]-
Autor(es): dc.creatorKrueger, Eddy-
Autor(es): dc.creatorMinhoto Teixeira, Marcelo Carvalho [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:46:34Z-
Data de disponibilização: dc.date.available2022-02-22T00:46:34Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-07-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.bspc.2021.102662-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/206252-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/206252-
Descrição: dc.descriptionPeople with spinal cord injury (SCI) may have their paralyzed muscles activated through functional electrical stimulation (FES). This neuromodulation technique has been used frequently to assist in controlling the movement of neuroprostheses. Electroencephalography (EEG) is able to trigger FES from the motor imagery captured through movements intentions. This research presents an isometric neuromuscular control system of the quadriceps muscle activated by EEG. Additionally, the detection of neuromuscular fatigue through the mechanomyography (MMG) technique is proposed, which is used to shut-off the system. A pilot study was performed on a chronic 42-year-old paraplegic (no voluntary contraction below the spinal cord injury level T8) volunteer. To do so, the training procedure for EEG signals was divided into the calibration and feedback phases. In the first one, four EEG channels and the Linear Discriminant Analysis (LDA) classifier were used to classify between motor imagery of the right leg and remain at rest. The maximum accuracy obtained during this stage was 77%. In the feedback phase, the volunteer was able to activate FES through brain–computer interface (BCI) in two tests (defined as Test 1 and Test 2) with the same procedure in different days. The closed-loop force control was tested with the setpoint of 2 kgf and 2.5 kgf and proved to be stable on both tests, successfully turning off the FES using the fatigue threshold from the MMG signal, being the main contribution of this work.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionUniversidade Estadual Paulista Júlio Mesquita Filho (UNESP) Faculdade de Engenharia Campus Ilha Solteira, Av. Brasil Sul, 56-
Descrição: dc.descriptionUniversidade Tecnológica Federal do Paraná (UTFPR), Marcílio Dias, 635-
Descrição: dc.descriptionUniversidade Tecnológica Federal do Paraná (UTFPR), Avenida Sete de Setembro 3165-
Descrição: dc.descriptionUniversidade Estadual de Londrina (UEL) – Departamento de Anatomia Laboratório de Engenharia Neural e de Reabilitação, Rodovia Celso Garcia Cid – Pr 445, Km 380-
Descrição: dc.descriptionInstituto Senai de Tecnologia da Informação e Comunicação (ISTIC) Laboratório de Sistemas Eletrônicos - Embarcados e de Potência IoT e Manufatura 4.0, Rua Belém 844-
Descrição: dc.descriptionUniversidade Estadual Paulista Júlio Mesquita Filho (UNESP) Faculdade de Engenharia Campus Ilha Solteira, Av. Brasil Sul, 56-
Idioma: dc.languageen-
Relação: dc.relationBiomedical Signal Processing and Control-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectBrain–computer interface-
Palavras-chave: dc.subjectClosed-loop systems-
Palavras-chave: dc.subjectElectroencephalography-
Palavras-chave: dc.subjectFunctional electrical stimulation-
Palavras-chave: dc.subjectMechanomyography-
Palavras-chave: dc.subjectMotor Imagery-
Palavras-chave: dc.subjectSpinal cord injury-
Título: dc.titleEEG-FES-Force-MMG closed-loop control systems of a volunteer with paraplegia considering motor imagery with fatigue recognition and automatic shut-off-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.