Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (Unesp) | - |
Autor(es): dc.creator | Ananias, Pedro Henrique Moraes [UNESP] | - |
Autor(es): dc.creator | Negri, Rogério Galante [UNESP] | - |
Data de aceite: dc.date.accessioned | 2022-02-22T00:46:17Z | - |
Data de disponibilização: dc.date.available | 2022-02-22T00:46:17Z | - |
Data de envio: dc.date.issued | 2021-06-25 | - |
Data de envio: dc.date.issued | 2021-06-25 | - |
Data de envio: dc.date.issued | 2020-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1080/17538947.2021.1907462 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/206146 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/206146 | - |
Descrição: dc.description | Algal blooms are a frequent subject in scientific discussions and are the focus of many recent studies, mainly due to their adverse effect on society. Given the lack of ground truth data and the need to develop tools for their detection and monitoring, this research proposes a novel method to automate detection. Concepts derived from multi-temporal image series processing, spectral indices and classification with One-class Support Vector Machine (OC-SVM) are used in this proposal. Imagery from multi-spectral sensors on Landsat-8 and MODIS were acquired through the Google Earth Engine API (GEE API). In order to evaluate our method, two bloom detection case studies (Lake Erie (USA) and Lake Taihu (China)) were performed. Comparisons were made with methods based on spectral index thresholds. Also, to demonstrate the performance of the OC-SVM classifier compared to other machine learning methods, the proposal was adapted to be used with a Random Forest (RF) classifier, having its results added to the analysis. In situ measurements show that the proposed method delivers highly accurate results compared to spectral index thresholding approaches. However, a drawback of the proposal refers to its higher computational cost. The application of the new method to a real-world bloom case is demonstrated. | - |
Descrição: dc.description | Graduate Program in Natural Disasters UNESP/CEMADEN | - |
Descrição: dc.description | Sciences Technology Institute São Paulo State University (UNESP) São José dos Campos | - |
Descrição: dc.description | Graduate Program in Natural Disasters UNESP/CEMADEN | - |
Descrição: dc.description | Sciences Technology Institute São Paulo State University (UNESP) São José dos Campos | - |
Idioma: dc.language | en | - |
Relação: dc.relation | International Journal of Digital Earth | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | algal bloom detection | - |
Palavras-chave: dc.subject | anomalies | - |
Palavras-chave: dc.subject | Remote sensing | - |
Palavras-chave: dc.subject | spectral indices | - |
Palavras-chave: dc.subject | unsupervised classification | - |
Título: dc.title | Anomalous behaviour detection using one-class support vector machine and remote sensing images: a case study of algal bloom occurrence in inland waters | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: