Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (Unesp) | - |
Autor(es): dc.contributor | Victoria University of Wellington | - |
Autor(es): dc.creator | Negri, Rogério G. [UNESP] | - |
Autor(es): dc.creator | Frery, Alejandro C. | - |
Data de aceite: dc.date.accessioned | 2022-02-22T00:45:03Z | - |
Data de disponibilização: dc.date.available | 2022-02-22T00:45:03Z | - |
Data de envio: dc.date.issued | 2021-06-25 | - |
Data de envio: dc.date.issued | 2021-06-25 | - |
Data de envio: dc.date.issued | 2020-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1007/s10044-020-00954-w | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/205698 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/205698 | - |
Descrição: dc.description | The Earth’s environment is continually changing due to both human and natural factors. Timely identification of the location and kind of change is of paramount importance in several areas of application. Because of that, remote sensing change detection is a topic of great interest. The development of precise change detection methods is a constant challenge. This study introduces a novel unsupervised change detection method based on data clustering and optimization. The proposal is less dependent on radiometric normalization than classical approaches. We carried experiments with remote sensing images and simulated datasets to compare the proposed method with other unsupervised well-known techniques. At its best, the proposal improves by 50% the accuracy concerning the second best technique. Such improvement is most noticeable with uncalibrated data. Experiments with simulated data reveal that the proposal is better than all other compared methods at any practical significance level. The results show the potential of the proposed method. | - |
Descrição: dc.description | Department of Environmental Engineering Institute of Science and Technology—ICT São Paulo State University—UNESP | - |
Descrição: dc.description | School of Mathematics and Statistics Victoria University of Wellington | - |
Descrição: dc.description | Department of Environmental Engineering Institute of Science and Technology—ICT São Paulo State University—UNESP | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Pattern Analysis and Applications | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Pattern analysis | - |
Palavras-chave: dc.subject | Remote sensing | - |
Palavras-chave: dc.subject | Unsupervised change detection | - |
Título: dc.title | Unsupervised Change Detection Driven by Floating References: A Pattern Analysis Approach | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: