Degradation kinetics and lifetime prediction for polystyrene/nanocellulose nanocomposites

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Caxias do Sul (UCS)-
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorFederal University of Rio Grande do Sul-
Autor(es): dc.creatorNeves, Roberta Motta-
Autor(es): dc.creatorOrnaghi, Heitor Luiz [UNESP]-
Autor(es): dc.creatorOrnaghi, Felipe Gustavo [UNESP]-
Autor(es): dc.creatorAmico, Sandro Campos-
Autor(es): dc.creatorZattera, Ademir José-
Data de aceite: dc.date.accessioned2022-02-22T00:44:17Z-
Data de disponibilização: dc.date.available2022-02-22T00:44:17Z-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2021-06-25-
Data de envio: dc.date.issued2019-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/s10973-020-10316-7-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/205423-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/205423-
Descrição: dc.descriptionCellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs) were incorporated into polystyrene (PS), and thermal stability and lifetime prediction of the nanocomposites were investigated for variable filler content (0.25, 0.50 and 1% w/w). Thermogravimetric analysis (TG) was carried out at four different heating rates (5, 10, 20 and 40 °C min−1) in a non-isothermal condition, and the degradation kinetics was studied based on Friedman and Flynn–Wall–Ozawa (FWO) methods. The same thermal degradation behavior was observed for all samples in the studied range of reinforcement content. For both reinforcements (CNFs and CNCs), Friedman and FWO results showed no dependence of the activation energy on conversion degree. A single-step degradation mechanism was observed for all samples (A → B degradation model), and the kinetic studies indicated an autocatalytic reaction model with a good fitting of the curves. Lifetime prediction based on kinetic analysis was successfully applied. Lastly, nanocellulose morphology influenced nanocomposite lifetime prediction, which became more stable over time, maintaining almost 100% of the mass for 10 years exposed at 30–120 °C.-
Descrição: dc.descriptionPostgraduate Program in Engineering of Processes and Technologies (PGEPROTEC) Universidade Caxias do Sul (UCS), Rua Francisco Getúlio Vargas, 1130-
Descrição: dc.descriptionFatigue and Aeronautical Material Research Group Department of Materials and Technology School of Engineering Universidade Estadual Paulista (UNESP), Av. Dr. Ariberto Pereira da Cunha, 333-
Descrição: dc.descriptionPostgraduate Program in Mining Metallurgical and Materials Engineering (PPGE3M) Federal University of Rio Grande do Sul-
Descrição: dc.descriptionFatigue and Aeronautical Material Research Group Department of Materials and Technology School of Engineering Universidade Estadual Paulista (UNESP), Av. Dr. Ariberto Pereira da Cunha, 333-
Idioma: dc.languageen-
Relação: dc.relationJournal of Thermal Analysis and Calorimetry-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectKinetics-
Palavras-chave: dc.subjectLifetime prediction-
Palavras-chave: dc.subjectNanocellulose-
Palavras-chave: dc.subjectNanocomposites-
Palavras-chave: dc.subjectPolystyrene-
Palavras-chave: dc.subjectThermal behavior-
Título: dc.titleDegradation kinetics and lifetime prediction for polystyrene/nanocellulose nanocomposites-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.