Thermal characterization and lifetime prediction of the PHBV/nanocellulose biocomposites using different kinetic approaches

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorCarvalho Benini, Kelly Cristina Coelho de [UNESP]-
Autor(es): dc.creatorOrnaghi, Heitor Luiz [UNESP]-
Autor(es): dc.creatorde Medeiros, Nicole Morabito [UNESP]-
Autor(es): dc.creatorPereira, Paulo Henrique Fernandes [UNESP]-
Autor(es): dc.creatorCioffi, Maria Odila Hilário [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:34:56Z-
Data de disponibilização: dc.date.available2022-02-22T00:34:56Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-09-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/s10570-020-03318-z-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/201934-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/201934-
Descrição: dc.descriptionIn the present study, biocomposite films from cellulose nanocrystals (CNCs) were obtained by the solution casting method. CNCs were isolated from pineapple crown using chemical treatments followed by sulfuric acid hydrolysis and added into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) matrix. The effect of freeze-dried CNC content (1, 3, and 5 wt%) on the structural, crystallization, thermal degradation lifetime prediction, and thermogravimetric simulation was investigated. An irreversible agglomeration observed after freeze-dried provided changes in the morphology and size of CNCs. Addition up to 3 wt% of CNCs increased the thermal stability, crystallization rate, and crystallinity index of PHBV, as showed by thermal and crystallinity analysis, respectively. The kinetic degradation study by thermogravimetric analysis (TGA) was done using the F-test method by statistically comparing degradation mechanisms in the solid-state. The most probable degradation mechanism was the autocatalytic reaction model for all samples (represented by Cn and Bna-types) with a suitable adjustment of the simulated curves. Lifetime prediction showed to be successfully applied based on the kinetic analysis, and PHBV reinforced with 3 wt% of CNCs presents the highest results for the isothermal temperature of 180 °C.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionDepartment of Materials and Technology Fatigue and Aeronautic Materials Research Group School of Engineering Sao Paulo State University (UNESP)-
Descrição: dc.descriptionDepartment of Materials and Technology Fatigue and Aeronautic Materials Research Group School of Engineering Sao Paulo State University (UNESP)-
Descrição: dc.descriptionCNPq: 153335/2018-1-
Descrição: dc.descriptionFAPESP: 2011/14153-8-
Descrição: dc.descriptionFAPESP: 2015/10386-9-
Formato: dc.format7503-7522-
Idioma: dc.languageen-
Relação: dc.relationCellulose-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectBiocomposite-
Palavras-chave: dc.subjectCellulose nanocrystals-
Palavras-chave: dc.subjectLifetime prediction-
Palavras-chave: dc.subjectThermal properties-
Título: dc.titleThermal characterization and lifetime prediction of the PHBV/nanocellulose biocomposites using different kinetic approaches-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.