Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (Unesp) | - |
Autor(es): dc.creator | de Fernando, Filipe Alves [UNESP] | - |
Autor(es): dc.creator | Guimarães Pedronette, Daniel Carlos [UNESP] | - |
Autor(es): dc.creator | de Sousa, Gustavo José [UNESP] | - |
Autor(es): dc.creator | Valem, Lucas Pascotti [UNESP] | - |
Autor(es): dc.creator | Guilherme, Ivan Rizzo [UNESP] | - |
Data de aceite: dc.date.accessioned | 2022-02-22T00:34:15Z | - |
Data de disponibilização: dc.date.available | 2022-02-22T00:34:15Z | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2019-12-31 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/201697 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/201697 | - |
Descrição: dc.description | Due to possibility of capturing complex relationships existing between nodes, many application benefit of being modeled with graphs. However, performance issues can be observed on large scale networks, making it computationally unfeasible to process information in various scenarios. Graph Embedding methods are usually used for finding low-dimensional vector representations for graphs, preserving its original properties such as topological characteristics, affinity and shared neighborhood between nodes. In this way, retrieval and machine learning techniques can be exploited to execute tasks such as classification, clustering, and link prediction. In this work, we propose RaDE (Rank Diffusion Embedding), an efficient and effective approach that considers rank-based graphs for learning a low-dimensional vector. The proposed approach was evaluated on 7 network datasets such as a social, co-reference, textual and image networks, with different properties. Vector representations generated with RaDE achieved effective results in visualization and retrieval tasks when compared to vector representations generated by other recent related methods. | - |
Descrição: dc.description | Institute of Geosciences and Exact Sciences UNESP - São Paulo State University | - |
Descrição: dc.description | Institute of Geosciences and Exact Sciences UNESP - São Paulo State University | - |
Formato: dc.format | 142-152 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Graph Embedding | - |
Palavras-chave: dc.subject | Network Representation Learning | - |
Palavras-chave: dc.subject | RaDE | - |
Palavras-chave: dc.subject | Ranking | - |
Título: dc.title | RaDE: A rank-based graph embedding approach | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: