Genome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorGeneticist Cobb-Vantress-
Autor(es): dc.contributor1675 Observatory Dr.-
Autor(es): dc.contributorNational Council for Science and Technological Development-
Autor(es): dc.creatorMota, Lucio F. M. [UNESP]-
Autor(es): dc.creatorLopes, Fernando B.-
Autor(es): dc.creatorFernandes Júnior, Gerardo A. [UNESP]-
Autor(es): dc.creatorRosa, Guilherme J. M.-
Autor(es): dc.creatorMagalhães, Ana F. B. [UNESP]-
Autor(es): dc.creatorCarvalheiro, Roberto [UNESP]-
Autor(es): dc.creatorAlbuquerque, Lucia G. [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:34:15Z-
Data de disponibilização: dc.date.available2022-02-22T00:34:15Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-11-30-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1038/s41598-020-63516-4-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/201694-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/201694-
Descrição: dc.descriptionAge at first calving (AFC) plays an important role in the economic efficiency of beef cattle production. This trait can be affected by a combination of genetic and environmental factors, leading to physiological changes in response to heifers’ adaptation to a wide range of environments. Genome-wide association studies through the reaction norm model were carried out to identify genomic regions associated with AFC in Nellore heifers, raised under different environmental conditions (EC). The SNP effects for AFC were estimated in three EC levels (Low, Medium, and High, corresponding to average contemporary group effects on yearling body weight equal to 159.40, 228.6 and 297.6 kg, respectively), which unraveled shared and unique genomic regions for AFC in Low, Medium, and High EC levels, that varied according to the genetic correlation between AFC in different EC levels. The significant genomic regions harbored key genes that might play an important biological role in controlling hormone signaling and metabolism. Shared genomic regions among EC levels were identified on BTA 2 and 14, harboring candidate genes associated with energy metabolism (IGFBP2, IGFBP5, SHOX, SMARCAL1, LYN, RPS20, MOS, PLAG1, CHCD7, and SDR16C6). Gene set enrichment analyses identified important biological functions related to growth, hormone levels affecting female fertility, physiological processes involved in female pregnancy, gamete generation, ovulation cycle, and age at puberty. The genomic regions highlighted differences in the physiological processes linked to AFC in different EC levels and metabolic processes that support complex interactions between the gonadotropic axes and sexual precocity in Nellore heifers.-
Descrição: dc.descriptionSão Paulo State University (UNESP) School of Agricultural and Veterinarian Sciences Via de Acesso Prof. Paulo Donato Castelane-
Descrição: dc.descriptionGeneticist Cobb-Vantress, 305 E Main St-
Descrição: dc.descriptionDepartment of Animal Sciences University of Wisconsin-Madison 1675 Observatory Dr.-
Descrição: dc.descriptionNational Council for Science and Technological Development-
Descrição: dc.descriptionSão Paulo State University (UNESP) School of Agricultural and Veterinarian Sciences Via de Acesso Prof. Paulo Donato Castelane-
Idioma: dc.languageen-
Relação: dc.relationScientific Reports-
???dc.source???: dc.sourceScopus-
Título: dc.titleGenome-wide scan highlights the role of candidate genes on phenotypic plasticity for age at first calving in Nellore heifers-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.