Analysing research collaboration through co-authorship networks in a big data environment: An efficient parallel approach

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorFluminense Federal University (UFF)-
Autor(es): dc.creatorValêncio, Carlos Roberto [UNESP]-
Autor(es): dc.creatorDe Freitas, José Carlos [UNESP]-
Autor(es): dc.creatorDe Souza, Rogéria Cristiane Gratão [UNESP]-
Autor(es): dc.creatorNeves, Leandro Alves [UNESP]-
Autor(es): dc.creatorZafalon, Geraldo Francisco Donegá [UNESP]-
Autor(es): dc.creatorColombini, Angelo Cesar-
Autor(es): dc.creatorTenório, William [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:34:10Z-
Data de disponibilização: dc.date.available2022-02-22T00:34:10Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2019-12-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1504/IJCSE.2020.106061-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/201662-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/201662-
Descrição: dc.descriptionBibliometry is the quantitative study of scientific productions and enables the characterisation of scientific collaboration networks. However, with the development of science and the increase of scientific production, large collaborative networks are formed, which makes it difficult to extract bibliometrics. In this context, this work presents an efficient parallel optimisation of three bibliometrics for co-authorship network analysis using multithread programming: transitivity, average distance, and diameter. Our experiments found that the time taken to calculate the transitivity value using the sequential approach grows 4.08 times faster than the parallel proposed approach when the size of co-authorship network grows. Similarly, the time taken to calculate the average distance and diameter values using the sequential approach grows 5.27 times faster than the parallel proposed approach when the size of co-authorship network grows. In addition, we report relevant values of speed up and efficiency for the developed algorithms.-
Descrição: dc.descriptionInstitute of Biosciences Humanities and Exact Sciences (IBILCE) São Paulo State University (UNESP) Campus São José Do Rio Preto-
Descrição: dc.descriptionFluminense Federal University (UFF)-
Descrição: dc.descriptionInstitute of Biosciences Humanities and Exact Sciences (IBILCE) São Paulo State University (UNESP) Campus São José Do Rio Preto-
Formato: dc.format364-374-
Idioma: dc.languageen-
Relação: dc.relationInternational Journal of Computational Science and Engineering-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectBibliometrics-
Palavras-chave: dc.subjectCo-authorship network-
Palavras-chave: dc.subjectGraphs-
Palavras-chave: dc.subjectKnowledge extraction-
Palavras-chave: dc.subjectNoSQL-
Palavras-chave: dc.subjectParallel computing-
Título: dc.titleAnalysing research collaboration through co-authorship networks in a big data environment: An efficient parallel approach-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.