Authentication of roasted and ground coffee samples containing multiple adulterants using NMR and a chemometric approach

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorUNILA - Universidade Federal da Interação Latino-americana-
Autor(es): dc.creatorMilani, Maria Izabel [UNESP]-
Autor(es): dc.creatorRossini, Eduardo Luiz [UNESP]-
Autor(es): dc.creatorCatelani, Tiago Augusto [UNESP]-
Autor(es): dc.creatorPezza, Leonardo [UNESP]-
Autor(es): dc.creatorToci, Aline Theodoro-
Autor(es): dc.creatorPezza, Helena Redigolo [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:33:37Z-
Data de disponibilização: dc.date.available2022-02-22T00:33:37Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-06-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.foodcont.2020.107104-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/201465-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/201465-
Descrição: dc.descriptionBrazil is still the world's largest producer and exporter of coffee. In order to maximize profits, some producers may add lower cost materials (such as corn, barley, or even coffee husks) to commercial coffee. In view of the growing market for coffee products and the importance of coffee for the Brazilian economy, it is necessary to have a rapid, simple, and reliable methodology to identify and quantify coffee adulterants. NMR has proved to be a versatile and robust tool for the identification of adulterants in foods and beverages. Here, we explore the versatility of 1H NMR assisted with chemometric tools, avoiding laborious data analysis, for the quantification of coffee adulteration. Six different adulterants were considered: barley, corn, coffee husks, soybean, rice, and wheat. The NMR-based methodology described here provided satisfactory LOD values (0.31–0.86%) for adulterants in medium and dark roast coffees. The statistical techniques PCA and SIMCA were employed for pattern recognition and the identification of pure and adulterated samples. Use of the SIMCA model enabled 100% correct classification for both training and prediction sets, ensuring the accuracy, traceability, and reliability of the results.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionInstituto de Química UNESP - Universidade Estadual Paulista, Rua Prof. Francisco Degni 55, C.P. 355-
Descrição: dc.descriptionInstituto Latino-americano de Ciências da Vida e da Natureza UNILA - Universidade Federal da Interação Latino-americana, Av. Tancredo Neves 6731, C.P. 2044-
Descrição: dc.descriptionInstituto de Química UNESP - Universidade Estadual Paulista, Rua Prof. Francisco Degni 55, C.P. 355-
Descrição: dc.descriptionCNPq: #141365/2016-1-
Descrição: dc.descriptionFAPESP: #2016/14773-0-
Idioma: dc.languageen-
Relação: dc.relationFood Control-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectChemometrics-
Palavras-chave: dc.subjectCoffee authentication-
Palavras-chave: dc.subjectNuclear magnetic resonance-
Palavras-chave: dc.subjectQuality control-
Palavras-chave: dc.subjectSIMCA-
Título: dc.titleAuthentication of roasted and ground coffee samples containing multiple adulterants using NMR and a chemometric approach-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.