A new approach using fuzzy DEA models to reduce search space and eliminate replications in simulation optimization problems

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorFederal University of Itajubá (UNIFEI) --
Autor(es): dc.creatorMarins, Fernando Augusto Silva [UNESP]-
Autor(es): dc.creatorda Silva, Aneirson Francisco [UNESP]-
Autor(es): dc.creatorMiranda, Rafael de Carvalho-
Autor(es): dc.creatorMontevechi, José Arnaldo Barra-
Data de aceite: dc.date.accessioned2022-02-22T00:33:28Z-
Data de disponibilização: dc.date.available2022-02-22T00:33:28Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-04-15-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.eswa.2019.113137-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/201416-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/201416-
Descrição: dc.descriptionThis article proposes a new combination of methods to increase optimization simulation efficiency and reliability, utilizing orthogonal arrays, fuzzy-data envelopment analysis (FDEA) with linear membership function, and discrete event simulation (DES). Considering a simulation optimization problem, experimental matrices are generated using orthogonal arrays and which simulation runs (scenarios) will be executed are defined, followed by FDEA to analyze and rank the scenarios in terms of their efficiency (considering occurrence of uncertainty). In this way, it is possible to reduce the search space of scenarios to be simulated, and avoid the need for replications in DES, without impairing the quality of the final solution. Six real cases that were solved by the proposed approach are presented. In order to highlight the efficiency of the proposed method, in Cases 5 and 6, all viable solutions of each of these problems were tested, ie, 100% of the search space was analyzed, and it was found that the solution obtained by the new method was statistically equal to the overall optimal solution. Note that for the other real cases solved, the solutions obtained by the proposed method were also statistically equal to those obtained from the original search space, and that analyzing 100% of the viable solutions space would be computationally impossible or impractical. These results confirmed the reliability and applicability of the proposed method, since it enabled a significant reduction in the search space for the simulation application compared to conventional simulation optimization techniques.-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionSao Paulo State University (UNESP) - Av. Dr. Ariberto Pereira da Cunha, 333 – Guaratinguetá-
Descrição: dc.descriptionFederal University of Itajubá (UNIFEI) -, Av. BPS, 1303–-
Descrição: dc.descriptionSao Paulo State University (UNESP) - Av. Dr. Ariberto Pereira da Cunha, 333 – Guaratinguetá-
Descrição: dc.descriptionCNPq: CNPq-302730/2018-4-
Descrição: dc.descriptionCNPq: CNPq-303350/2018-0-
Descrição: dc.descriptionCNPq: CNPq-305545/2017-5-
Descrição: dc.descriptionCNPq: CNPq-428362/2018-4-
Descrição: dc.descriptionCNPq: CNPq-431758/2016-6-
Descrição: dc.descriptionFAPESP: FAPESP-2018/06858-0-
Descrição: dc.descriptionFAPESP: FAPESP-2018/14433-0-
Idioma: dc.languageen-
Relação: dc.relationExpert Systems with Applications-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectDiscrete event simulation-
Palavras-chave: dc.subjectFuzzy-Data Envelopment Analysis-
Palavras-chave: dc.subjectSimulation optimization-
Título: dc.titleA new approach using fuzzy DEA models to reduce search space and eliminate replications in simulation optimization problems-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.