The synergy effect of carbon/glass/epoxy hybrid laminate in Mode I delamination: A physical microfracture analysis

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorMaciel Monticeli, Francisco [UNESP]-
Autor(es): dc.creatorYutaka Shiino, Marcos [UNESP]-
Autor(es): dc.creatorJacobus Cornelis Voorwald, Herman [UNESP]-
Autor(es): dc.creatorHilário Cioffi, Maria Odila [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:32:25Z-
Data de disponibilização: dc.date.available2022-02-22T00:32:25Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-10-31-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.engfracmech.2020.107295-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/201035-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/201035-
Descrição: dc.descriptionThe adoption of carbon/glass fiber hybrid composites is an economical alternative to high-cost carbon/epoxy composites and helps to address environmental issues. However, the addition of another type of fiber modifies the mechanical behavior of the composite regarding interfacial interactions, consequently affecting other properties. Research related to three interfaces, with regard to hybrid composites, has not yet provided a good understanding of the physical interactions between components at a hybrid interface and how they affect the interfacial adhesion. In order to partially understand the interactions occurring in the proposed material, the fracture toughness in Mode I delamination was analyzed based on microstructural fracture mechanisms (FBZ) and energy balance principle models. The addition of flexible glass fiber in a stiffer carbon fiber lay-up enabled a considerable increase in the delamination strength. This property is also attributed to the organosilane adhesion promoter, a natural silane present in glass fiber. Additionally, the increased strain energy release is physically influenced by the rougher fracture surface and the hybrid fiber bridging failure mechanisms, inducing a more stable crack propagation and higher fracture toughness, compared to a carbon fiber composite.-
Descrição: dc.descriptionDepartment of Materials and Technology São Paulo State University (Unesp) School of Engineering, Guaratinguetá 12516-410-
Descrição: dc.descriptionDepartamento de Engenharia Ambiental Instituto de Ciência e Tecnologia Universidade Estadual Paulista (Unesp)-
Descrição: dc.descriptionDepartment of Materials and Technology São Paulo State University (Unesp) School of Engineering, Guaratinguetá 12516-410-
Descrição: dc.descriptionDepartamento de Engenharia Ambiental Instituto de Ciência e Tecnologia Universidade Estadual Paulista (Unesp)-
Idioma: dc.languageen-
Relação: dc.relationEngineering Fracture Mechanics-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectFiber bridging-
Palavras-chave: dc.subjectFracture micro-mechanisms-
Palavras-chave: dc.subjectFracture toughness-
Palavras-chave: dc.subjectHybrid composite-
Palavras-chave: dc.subjectMode I delamination-
Título: dc.titleThe synergy effect of carbon/glass/epoxy hybrid laminate in Mode I delamination: A physical microfracture analysis-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.