Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | CNRS | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (Unesp) | - |
Autor(es): dc.contributor | UTFPR - Federal University of Technology | - |
Autor(es): dc.creator | Arcolezi, Héber H. [UNESP] | - |
Autor(es): dc.creator | Nunes, Willian R. B. M. | - |
Autor(es): dc.creator | Cerna, Selene [UNESP] | - |
Autor(es): dc.creator | de Araujo, Rafael A. [UNESP] | - |
Autor(es): dc.creator | Sanches, Marcelo Augusto Assunção [UNESP] | - |
Autor(es): dc.creator | Teixeira, Marcelo Carvalho Minhoto [UNESP] | - |
Autor(es): dc.creator | de Carvalho, Aparecido Augusto [UNESP] | - |
Data de aceite: dc.date.accessioned | 2022-02-22T00:32:20Z | - |
Data de disponibilização: dc.date.available | 2022-02-22T00:32:20Z | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2019-12-31 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1007/s42600-020-00089-1 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/201010 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/201010 | - |
Descrição: dc.description | Purpose: Recurrent neural networks (RNNs) offer a promising opportunity for identifying nonlinear systems. This paper investigates the effectiveness of the long short-term memory (LSTM) RNN architecture in the specific task of identifying the knee joint angular position under neuromuscular electrical stimulation (NMES). The standard RNN model referred to as SimpleRNN and the well-known multilayer perceptron (MLP) are used for comparison purposes. Methods: Data from seven healthy and two paraplegic volunteers were experimentally acquired. These data were adequately scaled, encoded using three timestep values (1, 5, and 10), and divided into training, validation, and testing sets. These models were mainly evaluated using the root mean square error (RMSE) and training time metrics. Results: The three NN models demonstrated very good fitting to data for all volunteers. The LSTM presented smaller RMSE for most of the individuals. This is even more notable when using 5 and 10 timesteps achieving half and one-third of the error from MLP and half of the error from the SimpleRNN. This higher utility comes with a substantial time-utility trade-off. Conclusion: The results in this paper show that the LSTM worths deeper investigation to design control-oriented models to knee joint stimulation in closed-loop systems. Even though the LSTM takes more time for training due to a more complex architecture, time and computational costs could be increased if achieving better modeling of systems. Rather than mathematically modeling this system with several unique parameters per individual, the use of NNs is encouraged in this task where there exist high nonlinearities and time-varying parameters. | - |
Descrição: dc.description | Femto-ST Institute University Bourgogne Franche-Comté UBFC CNRS | - |
Descrição: dc.description | Department of Electrical Engineering UNESP – University Estadual Paulista Campus of Ilha Solteira | - |
Descrição: dc.description | Department of Electrical Engineering UTFPR - Federal University of Technology | - |
Descrição: dc.description | Department of Electrical Engineering UNESP – University Estadual Paulista Campus of Ilha Solteira | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Research on Biomedical Engineering | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Knee joint | - |
Palavras-chave: dc.subject | Long short-term memory | - |
Palavras-chave: dc.subject | Neuromuscular electrical stimulation | - |
Palavras-chave: dc.subject | Nonlinear system identification | - |
Palavras-chave: dc.subject | Spinal cord injury | - |
Título: dc.title | Identifying the knee joint angular position under neuromuscular electrical stimulation via long short-term memory neural networks | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: