Inland water's trophic status classification based on machine learning and remote sensing data

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorScience and Technology of Pará State – IFPA-
Autor(es): dc.creatorWatanabe, Fernanda S.Y. [UNESP]-
Autor(es): dc.creatorMiyoshi, Gabriela T. [UNESP]-
Autor(es): dc.creatorRodrigues, Thanan W.P.-
Autor(es): dc.creatorBernardo, Nariane M.R. [UNESP]-
Autor(es): dc.creatorRotta, Luiz H.S. [UNESP]-
Autor(es): dc.creatorAlcântara, Enner [UNESP]-
Autor(es): dc.creatorImai, Nilton N. [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:30:44Z-
Data de disponibilização: dc.date.available2022-02-22T00:30:44Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-08-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.rsase.2020.100326-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/200465-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/200465-
Descrição: dc.descriptionIn this work, we tested machine learning algorithms in classifying waters in a reservoir cascade with basis in trophic state. The classification was done through remote sensing reflectance (Rrs) measurements collected in situ. Chlorophyll-a (chla) content determined in the laboratory were used to define the trophic state in the sampling points distributed in four reservoirs (Barra Bonita, Bariri, Ibitinga and Nova Avanhandava), located at the Tietê River, Brazil. Those four impoundments exhibit widely differing optical properties from each other, which is rather evident in relation to chla concentration. From the dataset collected in the reservoir cascade, a trophic gradient is observed, decreasing from up-to downstream. To classify the trophic state, we tested three machine learning algorithms: Artificial Neural Network (ANN), Random Forest (RF) and Support Vector Machine (SVM). Results showed that ANN and RF algorithms exhibited the best performance in classifying the different trophic state in the cascade of reservoirs. Both approaches raised a global accuracy of 80.00% and average area under Receiver Operating Characteristics (ROC) curve (AUCROC) of 0.928 and 0.912, respectively. Comparing the machine learning approaches with a parametric algorithm, only SVM presented a slightly lower performance. The outcomes of this classification can be useful for trophic state mapping considering the large cascade of reservoirs or rivers. In addition, it can give a direction in bio-optical modeling studies, which have shown that a unique bio-optical algorithm is unable to accurately retrieving concentrations of optically active constituents in aquatic system with high optical variability. So that, it is possible to develop specific chla prediction models considering the optical characteristics of each stretch of river, since machine learning-based classifications (ANN and RF) indicate different optical regions.-
Descrição: dc.descriptionUniversidade Estadual Paulista-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionDepartment of Cartography Faculty of Sciences and Technology São Paulo State University – UNESP-
Descrição: dc.descriptionFederal Institute for Education Science and Technology of Pará State – IFPA-
Descrição: dc.descriptionDepartment of Environmental Engineering Institute of Science and Technology São Paulo State University – UNESP-
Descrição: dc.descriptionDepartment of Cartography Faculty of Sciences and Technology São Paulo State University – UNESP-
Descrição: dc.descriptionDepartment of Environmental Engineering Institute of Science and Technology São Paulo State University – UNESP-
Descrição: dc.descriptionCNPq: 151001/2019-7-
Descrição: dc.descriptionFAPESP: 2012/19821-1-
Descrição: dc.descriptionFAPESP: 2013/09045-7-
Descrição: dc.descriptionFAPESP: 2015/21586-9-
Descrição: dc.descriptionFAPESP: 2019/00259-0-
Descrição: dc.descriptionCNPq: 310660/2019-0-
Descrição: dc.descriptionCNPq: 400881/2013-6-
Descrição: dc.descriptionCNPq: 472131/2012-5-
Descrição: dc.descriptionCNPq: 482605/2013-8-
Descrição: dc.descriptionCNPq: 53854/2016-2-
Descrição: dc.descriptionCAPES: 88882.317841/2019-01-
Idioma: dc.languageen-
Relação: dc.relationRemote Sensing Applications: Society and Environment-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectArtificial neural network-
Palavras-chave: dc.subjectMultispectral data-
Palavras-chave: dc.subjectRandom forest-
Palavras-chave: dc.subjectRemote sensing-
Palavras-chave: dc.subjectSupport vector machine-
Título: dc.titleInland water's trophic status classification based on machine learning and remote sensing data-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.