Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (Unesp) | - |
Autor(es): dc.contributor | Universidade Federal de Mato Grosso do Sul (UFMS) | - |
Autor(es): dc.contributor | Cidade Universitária | - |
Autor(es): dc.contributor | National Land Survey of Finland | - |
Autor(es): dc.creator | Miyoshi, Gabriela Takahashi [UNESP] | - |
Autor(es): dc.creator | Arruda, Mauro dos Santos | - |
Autor(es): dc.creator | Osco, Lucas Prado | - |
Autor(es): dc.creator | Junior, José Marcato | - |
Autor(es): dc.creator | Gonçalves, Diogo Nunes | - |
Autor(es): dc.creator | Imai, Nilton Nobuhiro [UNESP] | - |
Autor(es): dc.creator | Tommaselli, Antonio Maria Garcia [UNESP] | - |
Autor(es): dc.creator | Honkavaara, Eija | - |
Autor(es): dc.creator | Gonçalves, Wesley Nunes | - |
Data de aceite: dc.date.accessioned | 2022-02-22T00:30:30Z | - |
Data de disponibilização: dc.date.available | 2022-02-22T00:30:30Z | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2020-04-01 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.3390/RS12081294 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/200401 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/200401 | - |
Descrição: dc.description | Deep neural networks are currently the focus of many remote sensing approaches related to forest management. Although they return satisfactory results in most tasks, some challenges related to hyperspectral data remain, like the curse of data dimensionality. In forested areas, another common problem is the highly-dense distribution of trees. In this paper, we propose a novel deep learning approach for hyperspectral imagery to identify single-tree species in highly-dense areas. We evaluated images with 25 spectral bands ranging from 506 to 820 nm taken over a semideciduous forest of the Brazilian Atlantic biome. We included in our network's architecture a band combination selection phase. This phase learns from multiple combinations between bands which contributed the most for the tree identification task. This is followed by a feature map extraction and a multi-stage model refinement of the confidence map to produce accurate results of a highly-dense target. Our method returned an f-measure, precision and recall values of 0.959, 0.973, and 0.945, respectively. The results were superior when compared with a principal component analysis (PCA) approach. Compared to other learning methods, ours estimate a combination of hyperspectral bands that most contribute to the mentioned task within the network's architecture. With this, the proposed method achieved state-of-the-art performance for detecting and geolocating individual tree-species in UAV-based hyperspectral images in a complex forest. | - |
Descrição: dc.description | Graduate Program in Cartographic Sciences São Paulo State University (UNESP) | - |
Descrição: dc.description | Graduate Program in Computer Sciences Faculty of Computer Science Federal University of Mato Grosso do Sul (UFMS), Av. Costa e Silva | - |
Descrição: dc.description | Faculty of Engineering and Architecture and Urbanism University ofWestern São Paulo (UNOESTE) Cidade Universitária, R. José Bongiovani | - |
Descrição: dc.description | Faculty of Engineering Architecture and Urbanism and Geography Federal University of Mato Grosso do Sul (UFMS), Av. Costa e Silva | - |
Descrição: dc.description | Department of Cartography São Paulo State University (UNESP) | - |
Descrição: dc.description | Finnish Geospatial Research Institute National Land Survey of Finland, Geodeetinrinne 2 | - |
Descrição: dc.description | Graduate Program in Cartographic Sciences São Paulo State University (UNESP) | - |
Descrição: dc.description | Department of Cartography São Paulo State University (UNESP) | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Remote Sensing | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Band selection | - |
Palavras-chave: dc.subject | Convolutional neural network | - |
Palavras-chave: dc.subject | Data-reduction | - |
Palavras-chave: dc.subject | High-density object | - |
Palavras-chave: dc.subject | Tree species identification | - |
Título: dc.title | A novel deep learning method to identify single tree species in UAV-based hyperspectral images | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: