Unsupervised selective rank fusion for image retrieval tasks

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorValem, Lucas Pascotti [UNESP]-
Autor(es): dc.creatorPedronette, Daniel Carlos Guimarães [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:27:49Z-
Data de disponibilização: dc.date.available2022-02-22T00:27:49Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-02-14-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.neucom.2019.09.065-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/199603-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/199603-
Descrição: dc.descriptionSeveral visual features have been developed for content-based image retrieval in the last decades, including global, local and deep learning-based approaches. However, despite the huge advances in features development and mid-level representations, a single visual descriptor is often insufficient to achieve effective retrieval results in several scenarios. Mainly due to the diverse aspects involved in human visual perception, the combination of different features has been establishing as a relevant trend in image retrieval. An intrinsic difficulty consists in the task of selecting the features to combine, which is often supported by supervised learning approaches. Therefore, in the absence of labeled data, selecting features in an unsupervised way is a very challenging, although essential task. In this paper, an unsupervised framework is proposed to select and fuse visual features in order to improve the effectiveness of image retrieval tasks. The framework estimates the effectiveness and correlation among features through a rank-based analysis and uses a list of ranker pairs to determine the selected features combinations. High-effective retrieval results were achieved through a comprehensive experimental evaluation conducted on 5 public datasets, involving 41 different features and comparison with other methods. Relative gains up to +55% were obtained in relation to the highest effective isolated feature.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionDepartment of Statistics Applied Mathematics and Computing (DEMAC) São Paulo State University (UNESP)-
Descrição: dc.descriptionDepartment of Statistics Applied Mathematics and Computing (DEMAC) São Paulo State University (UNESP)-
Descrição: dc.descriptionFAPESP: 2017/02091-4-
Descrição: dc.descriptionFAPESP: 2017/25908-6-
Descrição: dc.descriptionFAPESP: 2018/15597-6-
Descrição: dc.descriptionCNPq: 308194/2017-9-
Formato: dc.format182-199-
Idioma: dc.languageen-
Relação: dc.relationNeurocomputing-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectContent-based image retrieval-
Palavras-chave: dc.subjectCorrelation measure-
Palavras-chave: dc.subjectEffectiveness estimation-
Palavras-chave: dc.subjectRank-aggregation-
Palavras-chave: dc.subjectUnsupervised late fusion-
Título: dc.titleUnsupervised selective rank fusion for image retrieval tasks-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.