Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Estadual Paulista (Unesp) | - |
Autor(es): dc.contributor | CNRS | - |
Autor(es): dc.contributor | SDIS 25 - Service Départemental d'Incendie et de Secours du Doubs | - |
Autor(es): dc.creator | Nahuis, Selene Leya Cerna [UNESP] | - |
Autor(es): dc.creator | Guyeux, Christophe | - |
Autor(es): dc.creator | Arcolezi, Heber Hwang [UNESP] | - |
Autor(es): dc.creator | Couturier, Raphael | - |
Autor(es): dc.creator | Royer, Guillaume | - |
Autor(es): dc.creator | Lotufo, Anna Diva Plasencia [UNESP] | - |
Data de aceite: dc.date.accessioned | 2022-02-22T00:27:25Z | - |
Data de disponibilização: dc.date.available | 2022-02-22T00:27:25Z | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2019-04-01 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1109/CoDIT.2019.8820671 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/199457 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/199457 | - |
Descrição: dc.description | Many environmental, economic and societal factors are leading fire brigades to be increasingly solicited, and they, therefore, face an ever-increasing number of interventions, most of the time with constant resources. On the other hand, these interventions are directly related to human activity, which itself is predictable: swimming pool drownings occur in summer while road accidents due to ice storms occur in winter. One solution to improve the response of firefighters with constant resources is therefore to predict their workload, i.e., their number of interventions per hour, based on explanatory variables conditioning human activity. The purpose of this article is to show that these interventions can indeed be predicted, in a nonabsurd way, from state-of-the-art tools such as recurrent long short-term memory neural networks (LSTM). From the list of interventions in the Doubs (France), we show that it is possible to build, from scratch, a neural network capable of reasonably predicting the interventions of 2017 from those of 2012-2016. While the results could be improved, they are already promising and would allow the actions of firefighters with a constant resource to be optimized. | - |
Descrição: dc.description | Department of Electrical Engineering São Paulo State University UNESP Ilha Solteira | - |
Descrição: dc.description | FEMTO-ST Institute Univ. Bourgogne Franche-Comte (UBFC) CNRS | - |
Descrição: dc.description | SDIS 25 - Service Départemental d'Incendie et de Secours du Doubs | - |
Descrição: dc.description | Department of Electrical Engineering São Paulo State University UNESP Ilha Solteira | - |
Formato: dc.format | 1132-1137 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | 2019 6th International Conference on Control, Decision and Information Technologies, CoDIT 2019 | - |
???dc.source???: dc.source | Scopus | - |
Título: dc.title | Long short-term memory for predicting firemen interventions | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: