Edge-driven nanomembrane-based vertical organic transistors showing a multi-sensing capability

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorBrazilian Center for Research in Energy and Materials (CNPEM)-
Autor(es): dc.contributorUniversidade Estadual de Ponta Grossa (UEPG)-
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorNawaz, Ali-
Autor(es): dc.creatorMerces, Leandro-
Autor(es): dc.creatorde Andrade, Denise M.-
Autor(es): dc.creatorde Camargo, Davi H. S. [UNESP]-
Autor(es): dc.creatorBof Bufon, Carlos C. [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:24:44Z-
Data de disponibilização: dc.date.available2022-02-22T00:24:44Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-11-30-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1038/s41467-020-14661-x-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/198512-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/198512-
Descrição: dc.descriptionThe effective utilization of vertical organic transistors in high current density applications demands further reduction of channel length (given by the thickness of the organic semiconducting layer and typically reported in the 100 nm range) along with the optimization of the source electrode structure. Here we present a viable solution by applying rolled-up metallic nanomembranes as the drain-electrode (which enables the incorporation of few nanometer-thick semiconductor layers) and by lithographically patterning the source-electrode. Our vertical organic transistors operate at ultra-low voltages and demonstrate high current densities (~0.5 A cm−2) that are found to depend directly on the number of source edges, provided the source perforation gap is wider than 250 nm. We anticipate that further optimization of device structure can yield higher current densities (~10 A cm−2). The use of rolled-up drain-electrode also enables sensing of humidity and light which highlights the potential of these devices to advance next-generation sensing technologies.-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionBrazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM)-
Descrição: dc.descriptionDepartment of Materials Engineering Ponta Grossa State University (UEPG)-
Descrição: dc.descriptionPostgraduate Program in Materials Science and Technology (POSMAT) São Paulo State University (UNESP)-
Descrição: dc.descriptionPostgraduate Program in Materials Science and Technology (POSMAT) São Paulo State University (UNESP)-
Descrição: dc.descriptionFAPESP: 14/25979-2-
Descrição: dc.descriptionFAPESP: 14/50906-9-
Descrição: dc.descriptionFAPESP: 18/18136-0-
Descrição: dc.descriptionCNPq: 408770/2018-0-
Descrição: dc.descriptionCNPq: 465452/2014-0-
Idioma: dc.languageen-
Relação: dc.relationNature Communications-
???dc.source???: dc.sourceScopus-
Título: dc.titleEdge-driven nanomembrane-based vertical organic transistors showing a multi-sensing capability-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.