3D concurrent multiscale model for crack propagation in concrete

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.contributorUniversidade de São Paulo (USP)-
Autor(es): dc.creatorRodrigues, Eduardo A. [UNESP]-
Autor(es): dc.creatorManzoli, Osvaldo L. [UNESP]-
Autor(es): dc.creatorBitencourt, Luís A.G.-
Data de aceite: dc.date.accessioned2022-02-22T00:24:18Z-
Data de disponibilização: dc.date.available2022-02-22T00:24:18Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-04-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.cma.2019.112813-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/198349-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/198349-
Descrição: dc.descriptionA new approach for concurrent multiscale modeling of three-dimensional crack propagation in concrete is proposed. A macroscopic model with homogenized elastic parameters is adopted in the regions where the material behaves elastically. For regions where cracks are expected to occur, a mesoscopic model based on a mesh fragmentation technique is used to represent the concrete as a heterogeneous three-phase material composed of mortar matrix, coarse aggregates and interfacial transition zone. In this technique, standard finite elements with high aspect ratio are inserted in between all regular finite elements of the mortar matrix and in between the mortar matrix and aggregate elements in order to describe the crack initiation and propagation process by using an appropriate tensile damage constitutive model. Coarse aggregates with regular shapes are generated from a grading curve and placed into the mortar matrix randomly, using the “take-and-place” method. Coupling finite elements are used for connecting the non-matching meshes corresponding to the macro and mesoscale regions, without increasing the total number of degrees of freedom of the problem. Realistic predictions of crack formation and propagation were obtained for different tests, replicating accurately the observed experimental patterns.-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionSão Paulo State University - UNESP, Av. Eng. Luiz Edmundo C. Coube 14-01 - CEP - 17033-360 Bauru - SP-
Descrição: dc.descriptionUniversity of São Paulo - USP Department of Structural and Geotechnical Engineering, Av. Prof. Luciano Gualberto, Trav. do Biênio n. 380 - CEP - 05508-010 São Paulo - SP-
Descrição: dc.descriptionSão Paulo State University - UNESP, Av. Eng. Luiz Edmundo C. Coube 14-01 - CEP - 17033-360 Bauru - SP-
Idioma: dc.languageen-
Relação: dc.relationComputer Methods in Applied Mechanics and Engineering-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subject3D multiscale analysis-
Palavras-chave: dc.subjectConcrete crack propagation-
Palavras-chave: dc.subjectConcurrent model-
Palavras-chave: dc.subjectCoupling finite element-
Palavras-chave: dc.subjectMesh fragmentation technique-
Palavras-chave: dc.subjectSolid finite element-
Título: dc.title3D concurrent multiscale model for crack propagation in concrete-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.