Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Federal de Uberlândia (UFU) | - |
Autor(es): dc.contributor | Federal Institute of Triângulo Mineiro | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (Unesp) | - |
Autor(es): dc.contributor | Federal University of ABC | - |
Autor(es): dc.creator | Silva, Adriano Barbosa | - |
Autor(es): dc.creator | Martins, Alessandro S. | - |
Autor(es): dc.creator | Neves, Leandro A. [UNESP] | - |
Autor(es): dc.creator | Faria, Paulo R. | - |
Autor(es): dc.creator | Tosta, Thaína A. A. | - |
Autor(es): dc.creator | do Nascimento, Marcelo Zanchetta | - |
Data de aceite: dc.date.accessioned | 2022-02-22T00:23:53Z | - |
Data de disponibilização: dc.date.available | 2022-02-22T00:23:53Z | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2019-01-01 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1007/978-3-030-33904-3_34 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/198203 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/198203 | - |
Descrição: dc.description | Dysplasia is a common pre-cancerous abnormality that can be categorized as mild, moderate and severe. With the advance of digital systems applied in microscopes for histological analysis, specialists can obtain data that allows investigation using computational algorithms. These systems are known as computer-aided diagnosis, which provide quantitative analysis in a large number of data and features. This work proposes a method for nuclei segmentation for histopathological images of oral dysplasias based on an artificial neural network model and post-processing stage. This method employed nuclei masks for the training, where objects and bounding boxes were evaluated. In the post-processing step, false positive areas were removed by applying morphological operations, such as dilation and erosion. This approach was applied in a dataset with 296 regions of mice tongue images. The metrics accuracy, sensitivity, specificity, the Dice coefficient and correspondence ratio were employed for evaluation and comparison with other methods present in the literature. The results show that the method was able to segment the images with accuracy average value of 89.52 \pm 0.04 and Dice coefficient of 84.03\pm 0.06. These values are important to indicate that the proposed method can be applied as a tool for nuclei analysis in oral cavity images with relevant precision values for the specialist. | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | - |
Descrição: dc.description | Faculty of Computer Science Federal University of Uberlândia | - |
Descrição: dc.description | Federal Institute of Triângulo Mineiro | - |
Descrição: dc.description | Department of Computer Science and Statistics São Paulo State University (UNESP) | - |
Descrição: dc.description | Department of Histology and Morphology Institute of Biomedical Science Federal University of Uberlândia | - |
Descrição: dc.description | Center of Mathematics Computing and Cognition Federal University of ABC | - |
Descrição: dc.description | Department of Computer Science and Statistics São Paulo State University (UNESP) | - |
Descrição: dc.description | CNPq: 304848/2018-2 | - |
Descrição: dc.description | CNPq: 313365/2018-0 | - |
Descrição: dc.description | CNPq: 427114/2016-0 | - |
Descrição: dc.description | CNPq: 430965/2018-4 | - |
Descrição: dc.description | FAPEMIG: APQ-00578-18 | - |
Formato: dc.format | 365-374 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | CAD | - |
Palavras-chave: dc.subject | Convolutional neural network | - |
Palavras-chave: dc.subject | Dysplasia | - |
Palavras-chave: dc.subject | Nuclei segmentation | - |
Título: dc.title | Automated Nuclei Segmentation in Dysplastic Histopathological Oral Tissues Using Deep Neural Networks | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: