Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | CSIRO | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (Unesp) | - |
Autor(es): dc.creator | Silva, Caio Fischer [UNESP] | - |
Autor(es): dc.creator | Borges, Paulo V.K. | - |
Autor(es): dc.creator | Castanho, José E.C. [UNESP] | - |
Data de aceite: dc.date.accessioned | 2022-02-22T00:23:13Z | - |
Data de disponibilização: dc.date.available | 2022-02-22T00:23:13Z | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2020-12-11 | - |
Data de envio: dc.date.issued | 2019-01-01 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.5220/0007841900880096 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/197989 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/197989 | - |
Descrição: dc.description | A reliable perception pipeline is crucial to the operation of a safe and efficient autonomous vehicle. Fusing information from multiple sensors has become a common practice to increase robustness, given that different types of sensors have distinct sensing characteristics. Further, sensors can present diverse performance according to the operating environment. Most systems rely on a rigid sensor fusion strategy which considers the sensors input only (e.g., signal and corresponding covariances), without incorporating the influence of the environment, which often causes poor performance in mixed scenarios. In our approach, we have adjusted the sensor fusion strategy according to a classification of the scene around the vehicle. A convolutional neural network was employed to classify the environment, and this classification is used to select the best sensor configuration accordingly. We present experiments with a full-size autonomous vehicle operating in a heterogeneous environment. The results illustrate the applicability of the method with enhanced odometry estimation when compared to a rigid sensor fusion scheme. | - |
Descrição: dc.description | Robotics and Autonomous Systems Group CSIRO | - |
Descrição: dc.description | School of Engineering São Paulo State University - UNESP | - |
Descrição: dc.description | School of Engineering São Paulo State University - UNESP | - |
Formato: dc.format | 88-96 | - |
Idioma: dc.language | en | - |
Relação: dc.relation | ICINCO 2019 - Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics | - |
???dc.source???: dc.source | Scopus | - |
Palavras-chave: dc.subject | Environment-aware Sensor Fusion using Deep Learning | - |
Título: dc.title | Environment-aware sensor fusion using deep learning | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: