Unsupervised Effectiveness Estimation Through Intersection of Ranking References

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorPresotto, João Gabriel Camacho [UNESP]-
Autor(es): dc.creatorValem, Lucas Pascotti [UNESP]-
Autor(es): dc.creatorPedronette, Daniel Carlos Guimarães [UNESP]-
Data de aceite: dc.date.accessioned2022-02-22T00:23:12Z-
Data de disponibilização: dc.date.available2022-02-22T00:23:12Z-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2020-12-11-
Data de envio: dc.date.issued2019-01-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/978-3-030-29891-3_21-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/197978-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/197978-
Descrição: dc.descriptionEstimating the effectiveness of retrieval systems in unsupervised scenarios consists in a task of crucial relevance. By exploiting estimations which dot not require supervision, the retrieval results of many applications as rank aggregation and relevance feedback can be improved. In this paper, a novel approach for unsupervised effectiveness estimation is proposed based the intersection of ranking references at top-k positions of ranked lists. An experimental evaluation was conducted considering public datasets and different image features. The linear correlation between the proposed measure and the effectiveness evaluation measures was assessed, achieving high scores. In addition, the proposed measure was also evaluated jointly with rank aggregation methods, by assigning weights to ranked lists according to the effectiveness estimation of each feature.-
Descrição: dc.descriptionPetrobras-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionDepartment of Statistics Applied Mathematics and Computing State University of São Paulo (UNESP)-
Descrição: dc.descriptionDepartment of Statistics Applied Mathematics and Computing State University of São Paulo (UNESP)-
Descrição: dc.descriptionPetrobras: #2017/00285-6-
Descrição: dc.descriptionFAPESP: #2017/02091-4-
Descrição: dc.descriptionFAPESP: #2017/25908-6-
Descrição: dc.descriptionFAPESP: #2018/15597-6-
Descrição: dc.descriptionFAPESP: #2019/04754-6-
Descrição: dc.descriptionCNPq: #308194/2017-9-
Formato: dc.format231-244-
Idioma: dc.languageen-
Relação: dc.relationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)-
???dc.source???: dc.sourceScopus-
Palavras-chave: dc.subjectEffectiveness estimation-
Palavras-chave: dc.subjectImage retrieval-
Palavras-chave: dc.subjectRanking-
Título: dc.titleUnsupervised Effectiveness Estimation Through Intersection of Ranking References-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.