Atenção: Todas as denúncias são sigilosas e sua identidade será preservada.
Os campos nome e e-mail são de preenchimento opcional
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.contributor | Universidade Federal de Minas Gerais (UFMG) | - |
Autor(es): dc.contributor | Universidade Estadual de Campinas (UNICAMP) | - |
Autor(es): dc.contributor | Universidade Estadual Paulista (Unesp) | - |
Autor(es): dc.contributor | Univ Stirling | - |
Autor(es): dc.creator | Nogueira, Keiller | - |
Autor(es): dc.creator | Santos, Jefersson A. dos | - |
Autor(es): dc.creator | Menini, Nathalia | - |
Autor(es): dc.creator | Silva, Thiago S. F. [UNESP] | - |
Autor(es): dc.creator | Morellato, Leonor Patricia C. [UNESP] | - |
Autor(es): dc.creator | Torres, Ricardo da S. | - |
Data de aceite: dc.date.accessioned | 2022-02-22T00:13:38Z | - |
Data de disponibilização: dc.date.available | 2022-02-22T00:13:38Z | - |
Data de envio: dc.date.issued | 2020-12-10 | - |
Data de envio: dc.date.issued | 2020-12-10 | - |
Data de envio: dc.date.issued | 2019-10-01 | - |
Fonte completa do material: dc.identifier | http://dx.doi.org/10.1109/LGRS.2019.2903194 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/11449/197504 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/11449/197504 | - |
Descrição: dc.description | Plant phenology studies rely on long-term monitoring of life cycles of plants. High-resolution unmanned aerial vehicles (UAVs) and near-surface technologies have been used for plant monitoring, demanding the creation of methods capable of locating, and identifying plant species through time and space. However, this is a challenging task given the high volume of data, the constant data missing from temporal dataset, the heterogeneity of temporal profiles, the variety of plant visual patterns, and the unclear definition of individuals' boundaries in plant communities. In this letter, we propose a novel method, suitable for phenological monitoring, based on convolutional networks (ConvNets) to perform spatio-temporal vegetation pixel classification on high-resolution images. We conducted a systematic evaluation using high-resolution vegetation image datasets associated with the Brazilian Cerrado biome. Experimental results show that the proposed approach is effective, overcoming other spatio-temporal pixel-classification strategies. | - |
Descrição: dc.description | Pro-Reitoria de Pesquisa da UFMG | - |
Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | - |
Descrição: dc.description | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
Descrição: dc.description | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
Descrição: dc.description | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
Descrição: dc.description | Cedro Textil, Reserva Vellozia, Parque Nacional da Serra do Cipo | - |
Descrição: dc.description | Univ Fed Minas Gerais, Dept Comp Sci, BR-31270901 Belo Horizonte, MG, Brazil | - |
Descrição: dc.description | Univ Estadual Campinas, Inst Comp, BR-13083970 Campinas, SP, Brazil | - |
Descrição: dc.description | Univ Estadual Paulista, Inst Biociencias, BR-13506900 Sao Paulo, Brazil | - |
Descrição: dc.description | Univ Estadual Paulista, IGCE, BR-13506900 Sao Paulo, Brazil | - |
Descrição: dc.description | Univ Stirling, Biol & Environm Sci, Fac Nat Sci, Stirling FK9 4LA, Scotland | - |
Descrição: dc.description | Univ Estadual Paulista, Inst Biociencias, BR-13506900 Sao Paulo, Brazil | - |
Descrição: dc.description | Univ Estadual Paulista, IGCE, BR-13506900 Sao Paulo, Brazil | - |
Descrição: dc.description | FAPEMIG: APQ-00449-17 | - |
Descrição: dc.description | FAPESP: 2013/50155-0 | - |
Descrição: dc.description | FAPESP: 2013/50169-1 | - |
Descrição: dc.description | FAPESP: 2009/54208-6 | - |
Descrição: dc.description | FAPESP: 2016/26170-8 | - |
Descrição: dc.description | FAPESP: 2018/06918-3 | - |
Descrição: dc.description | CNPq: 424700/2018-2 | - |
Descrição: dc.description | CAPES: 001 | - |
Descrição: dc.description | CAPES: 88881.145912/2017-01 | - |
Descrição: dc.description | Cedro Textil, Reserva Vellozia, Parque Nacional da Serra do Cipo: PELD-CRSC-17 | - |
Formato: dc.format | 1665-1669 | - |
Idioma: dc.language | en | - |
Publicador: dc.publisher | Ieee-inst Electrical Electronics Engineers Inc | - |
Relação: dc.relation | Ieee Geoscience And Remote Sensing Letters | - |
???dc.source???: dc.source | Web of Science | - |
Palavras-chave: dc.subject | Deep learning | - |
Palavras-chave: dc.subject | near surface | - |
Palavras-chave: dc.subject | phenology | - |
Palavras-chave: dc.subject | pixel classification | - |
Palavras-chave: dc.subject | unmanned aerial vehicles | - |
Título: dc.title | Spatio-Temporal Vegetation Pixel Classification by Using Convolutional Networks | - |
Tipo de arquivo: dc.type | livro digital | - |
Aparece nas coleções: | Repositório Institucional - Unesp |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: