Influence of custom-made and stock mouthguard thickness on biomechanical response to a simulated impact

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorTribst, João Paulo Mendes-
Autor(es): dc.creatorde Oliveira Dal Piva, Amanda Maria-
Autor(es): dc.creatorBorges, Alexandre Luiz Souto-
Autor(es): dc.creatorBottino, Marco Antonio-
Data de aceite: dc.date.accessioned2021-03-11T01:39:48Z-
Data de disponibilização: dc.date.available2021-03-11T01:39:48Z-
Data de envio: dc.date.issued2019-10-06-
Data de envio: dc.date.issued2019-10-06-
Data de envio: dc.date.issued2018-12-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1111/edt.12432-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/189755-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/189755-
Descrição: dc.descriptionBackground/Aims: Mouthguards (MGs) are devices that can reduce the risks of facial trauma. However, the large variety of MG types and thicknesses raises the question of which type is the most effective and beneficial for the athletes. The aim of this study was to evaluate stress distribution in the skull, teeth, and jaws as a consequence of a direct impact. Material and Methods: Using modeling software, a human skull was modeled and a human jaw was created with all teeth inserted into the respective alveolus. The models were divided according to the MG type (custom-made or stock) and thickness (1, 2, and 4 mm). Two models without MG were evaluated with and without teeth contact. The geometries were exported to analysis software and the materials were considered ideal. Fixation occurred at the base of the foramen magnum. The load (500 N) was applied on the canine tooth with a ball. Maximum principal (MPa) and Von-Mises results were obtained. Results: Without any protection, the generated tensile stress was of greater magnitude causing more damage in the absence of teeth contact. The presence of a MG significantly reduced the generated stress in all structures, and the customized/individualized type was more efficient than stock MGs. Conclusions: In extreme situations when it is impossible to use a MG, keeping the teeth in maximum intercuspal position is less harmful. Despite this, the use of any MG is beneficial and assists in dampening the generated stress. The thicker the device, the greater the capacity for decreasing the damage in all structures. The use of individual protectors for each patient is even more beneficial for preventing trauma during at-risk activities of impact.-
Formato: dc.format429-437-
Idioma: dc.languageen-
Relação: dc.relationDental Traumatology-
Direitos: dc.rightsclosedAccess-
Palavras-chave: dc.subjectcraniomandibular complex-
Palavras-chave: dc.subjectdental trauma-
Palavras-chave: dc.subjectfinite element analysis-
Palavras-chave: dc.subjectmouthguard-
Palavras-chave: dc.subjectshock absorption-
Palavras-chave: dc.subjectsports dentistry-
Título: dc.titleInfluence of custom-made and stock mouthguard thickness on biomechanical response to a simulated impact-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.