Tool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model

Registro completo de metadados
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorAlexandre, Felipe Aparecido-
Autor(es): dc.creatorLopes, Wenderson Nascimento-
Autor(es): dc.creatorLofrano Dotto, Fábio R.-
Autor(es): dc.creatorFerreira, Fábio Isaac-
Autor(es): dc.creatorAguiar, Paulo Roberto-
Autor(es): dc.creatorBianchi, Eduardo Carlos-
Autor(es): dc.creatorLopes, José Cláudio-
Data de aceite:
Data de disponibilização:
Data de envio:
Data de envio:
Data de envio:
Fonte completa do material: dc.identifier
Fonte completa do material: dc.identifier
Fonte: dc.identifier.uri
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionThe grinding process is situated at the end of the machining chain, where geometric and dimensional characteristics and high-quality surface are required. The constant use of cutting tool (grinding wheel) causes loss of its sharpness and clogging of the pores among the abrasive grains. In this context, the dressing operation is necessary to correct these and other problems related to its use in the process. Dressing is a reconditioning operation of the grinding wheel surface aiming at restoring the original condition and its efficiency. The objective of this study is to evaluate the surface regularity and dressing condition of the grinding wheel in the surface grinding process by means of digital signal processing of acoustic emission and fuzzy models. Tests were conducted by using synthetic diamond dressers in a surface grinding machine equipped with an aluminum oxide grinding wheel. The acoustic emission sensor was attached to the dresser holder. A frequency domain analysis was performed to choose the bands that best characterized the process. A frequency band of 25–40 kHz was used to calculate the ratio of power (ROP) statistic, and the mean and standard deviation values of the ROP were inputted to the fuzzy system. The results indicate that the fuzzy model was highly effective in diagnosing the surface conditions of the grinding wheel.-
Formato: dc.format67-79-
Idioma: dc.languageen-
Relação: dc.relationInternational Journal of Advanced Manufacturing Technology-
Relação: dc.relation0,994-
Relação: dc.relation0,994-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectAcoustic emission-
Palavras-chave: dc.subjectDressing-
Palavras-chave: dc.subjectFuzzy-
Palavras-chave: dc.subjectGrinding-
Palavras-chave: dc.subjectMonitoring-
Palavras-chave: dc.subjectTool condition-
Título: dc.titleTool condition monitoring of aluminum oxide grinding wheel using AE and fuzzy model-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.