A correlation graph approach for unsupervised manifold learning in image retrieval tasks

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorPedronette, Daniel Carlos Guimarães-
Autor(es): dc.creatorTorres, Ricardo da S.-
Data de aceite: dc.date.accessioned2021-03-11T00:40:47Z-
Data de disponibilização: dc.date.available2021-03-11T00:40:47Z-
Data de envio: dc.date.issued2018-12-11-
Data de envio: dc.date.issued2018-12-11-
Data de envio: dc.date.issued2016-10-05-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1016/j.neucom.2016.03.081-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/173064-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/173064-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionCNPq: 306580/2012-8-
Descrição: dc.descriptionCNPq: 484254/2012-0-
Descrição: dc.descriptionEffectively measuring the similarity among images is a challenging problem in image retrieval tasks due to the difficulty of considering the dataset manifold. This paper presents an unsupervised manifold learning algorithm that takes into account the intrinsic dataset geometry for defining a more effective distance among images. The dataset structure is modeled in terms of a Correlation Graph (CG) and analyzed using Strongly Connected Components (SCCs). While the Correlation Graph adjacency provides a precise but strict similarity relationship, the Strongly Connected Components analysis expands these relationships considering the dataset geometry. A large and rigorous experimental evaluation protocol was conducted for different image retrieval tasks. The experiments were conducted in different datasets involving various image descriptors. Results demonstrate that the manifold learning algorithm can significantly improve the effectiveness of image retrieval systems. The presented approach yields better results in terms of effectiveness than various methods recently proposed in the literature.-
Formato: dc.format66-79-
Idioma: dc.languageen-
Relação: dc.relationNeurocomputing-
Relação: dc.relation1,073-
Direitos: dc.rightsclosedAccess-
Palavras-chave: dc.subjectContent-based image retrieval-
Palavras-chave: dc.subjectCorrelation graph-
Palavras-chave: dc.subjectStrongly connected components-
Palavras-chave: dc.subjectUnsupervised manifold learning-
Título: dc.titleA correlation graph approach for unsupervised manifold learning in image retrieval tasks-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.