A simple and efficient off-optical axis electro-optic voltage sensor

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (Unesp)-
Autor(es): dc.creatorGarcia, Marlon Rodrigues [UNESP]-
Autor(es): dc.creatorGaleti, Jose Henrique [UNESP]-
Autor(es): dc.creatorHiguti, Ricardo Tokio [UNESP]-
Autor(es): dc.creatorKitano, Claudio [UNESP]-
Data de aceite: dc.date.accessioned2022-02-21T23:25:46Z-
Data de disponibilização: dc.date.available2022-02-21T23:25:46Z-
Data de envio: dc.date.issued2018-12-11-
Data de envio: dc.date.issued2018-12-11-
Data de envio: dc.date.issued2014-03-12-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1109/INDUSCON.2014.7059409-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/172193-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/172193-
Descrição: dc.descriptionSinusoidal high-voltage measurements at 50/60 Hz are very important since, at present, power delivery systems use this kind of low frequency waveforms. It is well known that conventional instrument transformers, based on electromagnetic principles, present problems with respect to their responses in the presence of harmonic distortion. On the other hand, optical instrument transformers have excellent frequency response, which significantly contributes to a more accurate measurement of these harmonic components. The high voltages of power delivery systems require monitoring by techniques that provide electrical isolation. For these reasons, optical techniques are a good choice for this application. The basic principle of remote measurement of high voltages using the Pockels effect is inspired by the principle of conventional electro-optic modulator used in optical communication systems, whose carrier works up to MHz frequencies. A typical arrangement of a bulk-type optical voltage sensor consists of an electro-optic crystal placed between two crossed polarizers. The system must usually be biased with a fixed retardation π/2 rad to the 50% transmission curve point, which can be achieved using a quarter wave-plate, avoiding the need for a high voltage bias. However, the further elimination of the quarter wave-plate from the voltage sensor would be very effective for simplifying the sensing system, improving the temperature stability and achieving the insensitivity to light wavelength. This effect can be easily achieved by a slight misalignment of the light beam propagating on the X-Z plane, through a small angle from the Z axis of the crystal. The design methodology, the theoretical projection of the electro-optic voltage sensor performance, and finally, laboratory low voltage testing are reported in this paper.-
Descrição: dc.descriptionElectrical Engineering Department Faculdade de Engenharia de Una Solteira-FEIS São Paulo State University-UNESP-
Descrição: dc.descriptionElectrical Engineering Department Faculdade de Engenharia de Una Solteira-FEIS São Paulo State University-UNESP-
Idioma: dc.languageen-
Relação: dc.relation2014 11th IEEE/IAS International Conference on Industry Applications, IEEE INDUSCON 2014 - Electronic Proceedings-
Direitos: dc.rightsAcesso aberto-
???dc.source???: dc.sourceScopus-
Título: dc.titleA simple and efficient off-optical axis electro-optic voltage sensor-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.