Handling dropout probability estimation in convolution neural networks using meta-heuristics

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorRosa, Gustavo H. de-
Autor(es): dc.creatorPapa, Joao P.-
Autor(es): dc.creatorYang, Xin-S-
Data de aceite: dc.date.accessioned2021-03-10T23:58:58Z-
Data de disponibilização: dc.date.available2021-03-10T23:58:58Z-
Data de envio: dc.date.issued2018-11-26-
Data de envio: dc.date.issued2018-11-26-
Data de envio: dc.date.issued2018-09-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/s00500-017-2678-4-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/164566-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/164566-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionProcesso FAPESP: 2015/25739-4-
Descrição: dc.descriptionProcesso FAPESP: 2014/12236-1-
Descrição: dc.descriptionProcesso FAPESP: 2014/16250-9-
Descrição: dc.descriptionCNPq: 306166/2014-3-
Descrição: dc.descriptionDeep learning-based approaches have been paramount in recent years, mainly due to their outstanding results in several application domains, ranging from face and object recognition to handwritten digit identification. Convolutional neural networks (CNNs) have attracted a considerable attention since they model the intrinsic and complex brain working mechanisms. However, one main shortcoming of such models concerns their overfitting problem, which prevents the network from predicting unseen data effectively. In this paper, we address this problem by means of properly selecting a regularization parameter known as dropout in the context of CNNs using meta-heuristic-driven techniques. As far as we know, this is the first attempt to tackle this issue using this methodology. Additionally, we also take into account a default dropout parameter and a dropout-less CNN for comparison purposes. The results revealed that optimizing dropout-based CNNs is worthwhile, mainly due to the easiness in finding suitable dropout probability values, without needing to set new parameters empirically.-
Formato: dc.format6147-6156-
Idioma: dc.languageen-
Publicador: dc.publisherSpringer-
Relação: dc.relationSoft Computing-
Relação: dc.relation0,593-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectConvolutional neural networks-
Palavras-chave: dc.subjectDropout-
Palavras-chave: dc.subjectMeta-heuristic optimization-
Título: dc.titleHandling dropout probability estimation in convolution neural networks using meta-heuristics-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.