Structure and functional dynamics characterization of the ion channel of the human respiratory syncytial virus (hRSV) small hydrophobic protein (SH) transmembrane domain by combining molecular dynamics with excited normal modes

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.contributorUniversidade Estadual Paulista (UNESP)-
Autor(es): dc.creatorAraujo, Gabriela C.-
Autor(es): dc.creatorSilva, Ricardo H. T.-
Autor(es): dc.creatorScott, Luis P. B.-
Autor(es): dc.creatorAraujo, Alexandre S.-
Autor(es): dc.creatorSouza, Fatima P.-
Autor(es): dc.creatorOliveira, Ronaldo Junio de-
Data de aceite: dc.date.accessioned2021-03-10T23:52:42Z-
Data de disponibilização: dc.date.available2021-03-10T23:52:42Z-
Data de envio: dc.date.issued2018-11-26-
Data de envio: dc.date.issued2018-11-26-
Data de envio: dc.date.issued2016-12-01-
Fonte completa do material: dc.identifierhttp://dx.doi.org/10.1007/s00894-016-3150-6-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/11449/162251-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/11449/162251-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)-
Descrição: dc.descriptionCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
Descrição: dc.descriptionConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
Descrição: dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
Descrição: dc.descriptionProcesso FAPESP: 2011/17658-3-
Descrição: dc.descriptionProcesso FAPESP: 2010/18169-3-
Descrição: dc.descriptionThe human respiratory syncytial virus (hRSV) is the major cause of lower respiratory tract infection in children and elderly people worldwide. Its genome encodes 11 proteins including SH protein, whose functions are not well known. Studies show that SH protein increases RSV virulence degree and permeability to small compounds, suggesting it is involved in the formation of ion channels. The knowledge of SH structure and function is fundamental for a better understanding of its infection mechanism. The aim of this study was to model, characterize, and analyze the structural behavior of SH protein in the phospholipids bilayer environment. Molecular modeling of SH pentameric structure was performed, followed by traditional molecular dynamics (MD) simulations of the protein immersed in the lipid bilayer. Molecular dynamics with excited normal modes (MDeNM) was applied in the resulting system in order to investigate long time scale pore dynamics. MD simulations support that SH protein is stable in its pentameric form. Simulations also showed the presence of water molecules within the bilayer by density distribution, thus confirming that SH protein is a viroporin. This water transport was also observed in MDeNM studies with histidine residues of five chains (His22 and His51), playing a key role in pore permeability. The combination of traditional MD and MDeNM was a very efficient protocol to investigate functional conformational changes of transmembrane proteins that act as molecular channels. This protocol can support future investigations of drug candidates by acting on SH protein to inhibit viral infection.-
Formato: dc.format8-
Idioma: dc.languageen-
Publicador: dc.publisherSpringer-
Relação: dc.relationJournal Of Molecular Modeling-
Relação: dc.relation0,360-
Direitos: dc.rightsopenAccess-
Palavras-chave: dc.subjectExcited normal modes-
Palavras-chave: dc.subjectMolecular dynamics-
Palavras-chave: dc.subjectRSV-
Palavras-chave: dc.subjectSH protein-
Palavras-chave: dc.subjectViroporin-
Título: dc.titleStructure and functional dynamics characterization of the ion channel of the human respiratory syncytial virus (hRSV) small hydrophobic protein (SH) transmembrane domain by combining molecular dynamics with excited normal modes-
Tipo de arquivo: dc.typelivro digital-
Aparece nas coleções:Repositório Institucional - Unesp

Não existem arquivos associados a este item.