A survey on association rule mining for enterprise architecture model discovery

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorPinheiro, Carlos-
Autor(es): dc.creatorGuerreiro, Sérgio-
Autor(es): dc.creatorSão Mamede, Henrique-
Data de aceite: dc.date.accessioned2025-08-21T15:07:46Z-
Data de disponibilização: dc.date.available2025-08-21T15:07:46Z-
Data de envio: dc.date.issued2024-05-22-
Data de envio: dc.date.issued2024-05-22-
Data de envio: dc.date.issued2023-12-20-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/10400.2/16058-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/10400.2/16058-
Descrição: dc.descriptionAssociation Rule Mining (ARM) is a field of data mining (DM) that attempts to identify correlations among database items. It has been applied in various domains to discover patterns, provide insight into different topics, and build understandable, descriptive, and predic- tive models. On the one hand, Enterprise Architecture (EA) is a coherent set of principles, methods, and models suit- able for designing organizational structures. It uses view- points derived from EA models to express different concerns about a company and its IT landscape, such as organizational hierarchies, processes, services, applica- tions, and data. EA mining is the use of DM techniques to obtain EA models. This paper presents a literature review to identify the newest and most cited ARM algorithms and techniques suitable for EA mining that focus on automating the creation of EA models from existent data in application systems and services. It systematically identifies and maps fourteen candidate algorithms into four categories useful for EA mining: (i) General Frequent Pattern Mining, (ii) High Utility Pattern Mining, (iii) Parallel Pattern Mining, and (iv) Distribute Pattern Mining. Based on that, it dis- cusses some possibilities and presents an exemplification with a prototype hypothesizing an ARM application for EA mining.-
Descrição: dc.descriptionOpen access funding provided by FCT|FCCN (b-on).-
Descrição: dc.descriptioninfo:eu-repo/semantics/publishedVersion-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Publicador: dc.publisherSpringer Vieweg-Springer Fachmedien Wiesbaden GmbH-
Relação: dc.relationINESC TEC - Institute for Systems and Computer Engineering, Technology and Science (INESC TEC)-
Relação: dc.relationInstituto de Engenharia de Sistemas e Computadores, Investigação e Desenvolvimento em Lisboa-
Direitos: dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/-
Palavras-chave: dc.subjectAssociation rule mining-
Palavras-chave: dc.subjectData mining-
Palavras-chave: dc.subjectEnterprise architecture mining-
Palavras-chave: dc.subjectEnterprise architecture modelling-
Palavras-chave: dc.subjectArtificial intelligence-
Título: dc.titleA survey on association rule mining for enterprise architecture model discovery-
Aparece nas coleções:Repositório Aberto - Universidade Aberta (Portugal)

Não existem arquivos associados a este item.