Plenty of hyperbolicity on a class of linear homogeneous jerk differential equations

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBessa, Mário-
Data de aceite: dc.date.accessioned2025-08-22T11:44:18Z-
Data de disponibilização: dc.date.available2025-08-22T11:44:18Z-
Data de envio: dc.date.issued2023-05-31-
Data de envio: dc.date.issued2023-05-31-
Data de envio: dc.date.issued2022-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/10400.2/13928-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/10400.2/13928-
Descrição: dc.descriptionWe consider 3×3 partially hyperbolic linear differential systems over an ergodic flow X^t and derived from the linear homogeneous differential equation x''(t)+β(X^t(t))x'(t)+ γ(t)x(t) = 0. Assuming that the partial hyperbolic decomposition E^s ⊕ E^c ⊕ E^u is proper and displays a zero Lyapunov exponent along the central direction E^c we prove that some C^0 perturbation of the parameters β(t) and γ(t) can be done in order to obtain non-zero Lyapunov exponents and so a chaotic behaviour of the solution.-
Descrição: dc.descriptioninfo:eu-repo/semantics/publishedVersion-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Publicador: dc.publisherSpringer-
Relação: dc.relationhttps://link.springer.com/article/10.1007/s00010-023-00948-z-
Palavras-chave: dc.subjectLyapunov exponents-
Palavras-chave: dc.subjectJerk equations-
Palavras-chave: dc.subjectPartial hyperbolicity-
Título: dc.titlePlenty of hyperbolicity on a class of linear homogeneous jerk differential equations-
Aparece nas coleções:Repositório Aberto - Universidade Aberta (Portugal)

Não existem arquivos associados a este item.