The Lyapunov exponents of generic zero divergence three-dimensional vector fields

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBessa, Mário-
Data de aceite: dc.date.accessioned2025-08-22T11:51:14Z-
Data de disponibilização: dc.date.available2025-08-22T11:51:14Z-
Data de envio: dc.date.issued2023-05-25-
Data de envio: dc.date.issued2023-05-25-
Data de envio: dc.date.issued2007-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/10400.2/13836-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/10400.2/13836-
Descrição: dc.descriptionWe prove that for a C1-generic (dense Gδ) subset of all the conservative vector fields on three-dimensional compact manifolds without singularities, we have for Lebesgue almost every (a.e.) point p ∈ M that either the Lyapunov exponents at p are zero or X is an Anosov vector field. Then we prove that for a C1-dense subset of all the conservative vector fields on three-dimensional compact manifolds, we have for Lebesgue a.e. p ∈ M that either the Lyapunov exponents at p are zero or p belongs to a compact invariant set with dominated splitting for the linear Poincaré flow.-
Descrição: dc.descriptioninfo:eu-repo/semantics/publishedVersion-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Publicador: dc.publisherCambridge University Press-
Relação: dc.relationNot available-
Título: dc.titleThe Lyapunov exponents of generic zero divergence three-dimensional vector fields-
Aparece nas coleções:Repositório Aberto - Universidade Aberta (Portugal)

Não existem arquivos associados a este item.