Abundance of elliptic dynamics on conservative three-flows

Registro completo de metadados
MetadadosDescriçãoIdioma
Autor(es): dc.creatorBessa, Mário-
Autor(es): dc.creatorDuarte, Pedro-
Data de aceite: dc.date.accessioned2025-08-21T15:25:03Z-
Data de disponibilização: dc.date.available2025-08-21T15:25:03Z-
Data de envio: dc.date.issued2023-05-25-
Data de envio: dc.date.issued2023-05-25-
Data de envio: dc.date.issued2008-
Fonte completa do material: dc.identifierhttp://hdl.handle.net/10400.2/13833-
Fonte: dc.identifier.urihttp://educapes.capes.gov.br/handle/10400.2/13833-
Descrição: dc.descriptionWe consider a compact three-dimensional boundaryless Riemannian manifold M and the set of divergence-free (or zero divergence) vector fields without singularities, then we prove that this set has a C 1-residual (dense G_δ) such that any vector field inside it is Anosov or else its elliptical orbits are dense in the manifold M. This is the flow-setting counterpart of Newhouse's Theorem 1.3 (S. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Am. J. Math. 99 (1977), pp. 1061–1087). Our result follows from two theorems, the first one says that if Λ is a hyperbolic invariant set for some class C^1 zero divergence vector field X on M, then either X is Anosov, or else Λ has empty interior. The second one says that, if X is not Anosov, then for any open set U ⊆ M there exists Y arbitrarily close to X such that Y t has an elliptical closed orbit through U.-
Descrição: dc.descriptioninfo:eu-repo/semantics/publishedVersion-
Formato: dc.formatapplication/pdf-
Idioma: dc.languageen-
Publicador: dc.publisherTaylor & Francis-
Relação: dc.relationABUNDÂNCIA DE EXPOENTES DE IYAPUNOV ZERO EM SISTEMAS CONSERVATIVOS A TEMPO CONTÍNUO-
Relação: dc.relationhttps://www.tandfonline.com/doi/abs/10.1080/14689360802162872-
Título: dc.titleAbundance of elliptic dynamics on conservative three-flows-
Aparece nas coleções:Repositório Aberto - Universidade Aberta (Portugal)

Não existem arquivos associados a este item.