Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Bessa, Mário | - |
Autor(es): dc.creator | Duarte, Pedro | - |
Data de aceite: dc.date.accessioned | 2025-08-21T15:25:03Z | - |
Data de disponibilização: dc.date.available | 2025-08-21T15:25:03Z | - |
Data de envio: dc.date.issued | 2023-05-25 | - |
Data de envio: dc.date.issued | 2023-05-25 | - |
Data de envio: dc.date.issued | 2008 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/10400.2/13833 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/10400.2/13833 | - |
Descrição: dc.description | We consider a compact three-dimensional boundaryless Riemannian manifold M and the set of divergence-free (or zero divergence) vector fields without singularities, then we prove that this set has a C 1-residual (dense G_δ) such that any vector field inside it is Anosov or else its elliptical orbits are dense in the manifold M. This is the flow-setting counterpart of Newhouse's Theorem 1.3 (S. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Am. J. Math. 99 (1977), pp. 1061–1087). Our result follows from two theorems, the first one says that if Λ is a hyperbolic invariant set for some class C^1 zero divergence vector field X on M, then either X is Anosov, or else Λ has empty interior. The second one says that, if X is not Anosov, then for any open set U ⊆ M there exists Y arbitrarily close to X such that Y t has an elliptical closed orbit through U. | - |
Descrição: dc.description | info:eu-repo/semantics/publishedVersion | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Publicador: dc.publisher | Taylor & Francis | - |
Relação: dc.relation | ABUNDÂNCIA DE EXPOENTES DE IYAPUNOV ZERO EM SISTEMAS CONSERVATIVOS A TEMPO CONTÍNUO | - |
Relação: dc.relation | https://www.tandfonline.com/doi/abs/10.1080/14689360802162872 | - |
Título: dc.title | Abundance of elliptic dynamics on conservative three-flows | - |
Aparece nas coleções: | Repositório Aberto - Universidade Aberta (Portugal) |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: