Atenção:
O eduCAPES é um repositório de objetos educacionais, não sendo responsável por materiais de terceiros submetidos na plataforma. O usuário assume ampla e total responsabilidade quanto à originalidade, à titularidade e ao conteúdo, citações de obras consultadas, referências e outros elementos que fazem parte do material que deseja submeter. Recomendamos que se reporte diretamente ao(s) autor(es), indicando qual parte do material foi considerada imprópria (cite página e parágrafo) e justificando sua denúncia.
Caso seja o autor original de algum material publicado indevidamente ou sem autorização, será necessário que se identifique informando nome completo, CPF e data de nascimento. Caso possua uma decisão judicial para retirada do material, solicitamos que informe o link de acesso ao documento, bem como quaisquer dados necessários ao acesso, no campo abaixo.
Todas as denúncias são sigilosas e sua identidade será preservada. Os campos nome e e-mail são de preenchimento opcional. Porém, ao deixar de informar seu e-mail, um possível retorno será inviabilizado e/ou sua denúncia poderá ser desconsiderada no caso de necessitar de informações complementares.
Metadados | Descrição | Idioma |
---|---|---|
Autor(es): dc.creator | Bentz, Wolfram | - |
Autor(es): dc.creator | Gould, Victoria | - |
Data de aceite: dc.date.accessioned | 2025-08-22T11:47:49Z | - |
Data de disponibilização: dc.date.available | 2025-08-22T11:47:49Z | - |
Data de envio: dc.date.issued | 2023-01-29 | - |
Data de envio: dc.date.issued | 2023-01-29 | - |
Data de envio: dc.date.issued | 2020-10-21 | - |
Fonte completa do material: dc.identifier | http://hdl.handle.net/10400.2/13253 | - |
Fonte: dc.identifier.uri | http://educapes.capes.gov.br/handle/10400.2/13253 | - |
Descrição: dc.description | Preprint de "W. Bentz and V. Gould, “Independence Algebras, Basis Algebras and the Distributivity Condition”, Acta Mathematica Hungarica 162 (2020), 419–444." | - |
Descrição: dc.description | Stable basis algebras were introduced by Fountain and Gould and developed in a series of articles. They form a class of universal algebras, extending that of independence algebras, and reflecting the way in which free modules over well-behaved domains generalise vector spaces. If a stable basis algebra B satisfies the distributivity condition (a condition satisfied by all the previously known examples), it is a reduct of an independence algebra A. Our first aim is to give an example of an independence algebra not satisfying the distributivity condition. Gould showed that if a stable basis algebra B with the distributivity condition has finite rank, then so does the independence algebra A of which it is a reduct, and that in this case the endomorphism monoid End(B) of B is a left order in the endomorphism monoid End(A) of A. We complete the picture by determining when End(B) is a right, and hence a two-sided, order in End(A). In fact (for rank at least 2), this happens precisely when every element of End(A) can be written as α]β where α, β ∈ End(B), α] is the inverse of α in a subgroup of End(A) and α and β have the same kernel. This is equivalent to End(B) being a special kind of left order in End(A) known as straight. | - |
Descrição: dc.description | info:eu-repo/semantics/publishedVersion | - |
Formato: dc.format | application/pdf | - |
Idioma: dc.language | en | - |
Publicador: dc.publisher | Springer | - |
Direitos: dc.rights | http://creativecommons.org/licenses/by/4.0/ | - |
Palavras-chave: dc.subject | Independence algebras | - |
Palavras-chave: dc.subject | Basis algebras | - |
Palavras-chave: dc.subject | V∗-algebras | - |
Palavras-chave: dc.subject | Reduct | - |
Palavras-chave: dc.subject | Order | - |
Título: dc.title | Independence algebras, basis algebras and the distributivity condition | - |
Aparece nas coleções: | Repositório Aberto - Universidade Aberta (Portugal) |
O Portal eduCAPES é oferecido ao usuário, condicionado à aceitação dos termos, condições e avisos contidos aqui e sem modificações. A CAPES poderá modificar o conteúdo ou formato deste site ou acabar com a sua operação ou suas ferramentas a seu critério único e sem aviso prévio. Ao acessar este portal, você, usuário pessoa física ou jurídica, se declara compreender e aceitar as condições aqui estabelecidas, da seguinte forma: